1. bookVolume 22 (2020): Issue 1 (March 2020)
Journal Details
First Published
03 Jul 2007
Publication timeframe
4 times per year
Open Access

The application of modified layered double hydroxides in selective catalytic reduction of nitrogen oxides by ammonia (NH3-SCR)

Published Online: 17 Mar 2020
Volume & Issue: Volume 22 (2020) - Issue 1 (March 2020)
Page range: 61 - 67
Journal Details
First Published
03 Jul 2007
Publication timeframe
4 times per year

1. The European Parliament and the Council of the European Union. (2010). Directive 2010/75/EU of the European Parilament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union 17.12.2010.Search in Google Scholar

2. Samojeden, B. & Grzybek, T. (2016). The influence of the promotion of N-modified activated carbon with iron on NO removal by NH3-SCR (Selective catalytic reduction). Energy. 116, 1484–1491. DOI: 10.1016/j.energy.2016. in Google Scholar

3. Gao, F., Tang, X., Yi, H., Zhao, S., Li, C., Li, J., Shi Y. & Meng, X. (2017). A Review on Selective Catalytic Reduction of NOx by NH3 over Mn–Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations. Catalysts, 7(7), 199. DOI: 10.3390/catal7070199.10.3390/catal7070199Search in Google Scholar

4. Samojeden, B. & Grzybek, T. (2017). The influence of nitrogen groups introduced onto activated carbons by high- or low-temperature NH3 treatment on SO2 sorption capacity. Adsorpt. Sci. Technol. 35(5–6), 572–581. DOI: 10.1177/0263617417702153.10.1177/0263617417702153Search in Google Scholar

5. Motak, M., Kuterasiński, Ł., Da Costa, P. & Samojeden, B. (2015). Catalytic activity of layered aluminosilicates for VOC oxidation in the presence of NOx. Comptes Rendus Chim. 18(10), 1106–1113. DOI: 10.1016/j.crci.2015. in Google Scholar

6. Carja, G. & Delahay, G. (2004). Mesoporous mixed oxides derived from pillared oxovanadates layered double hydroxides as new catalysts for the selective catalytic reduction of NO by NH3. Appl. Catal. B. Environ. 47(1), 59–66. DOI: 10.1016/j. apcatb.2003.07.004.Search in Google Scholar

7. Cheng, M., Jiang, B., Yao, S., Han, J., Zhao, S., Tang, X., Zhang, J. & Wang, T. (2018). Mechanism of NH3 Selective Catalytic Reduction Reaction for NOx Removal from Deiesel Engine Exhaust and Hydrothermal Stability of Cu-Mn/Zeolite Catalyst. J. Phys. Chem. 122(1), 455–464. DOI: 10.1021/acs. jpcc.7b09339.Search in Google Scholar

8. Koebel, M., Elsener, M. & Kleemann, M. (2000). Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today. 59(3–4), 335–345. DOI: 10.1016/S0920-5861(00)00299-6.10.1016/S0920-5861(00)00299-6Search in Google Scholar

9. Grzybek, T. (2007). Layered clays as SCR deNOx catalysts. Catal. Today. 119(1–4), 125–132. DOI: 10.1016/j. cattod.2006.08.006.Search in Google Scholar

10. Peng, Y., Li, J., Si, W., Luo, J., Wang, Y., Fu, J., Li, X., Crittenden, J. & Hao, J. (2015). Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic. Appl. Catal. B Environ. 168–169, 195–202. DOI: 10.1016/j.apcatb.2014. in Google Scholar

11. Chang, H., Shi, C., Li, M., Zhang, T., Wang, C., Jiang, L., Wang, X. (2018). The effect of cations (NH4+, Na+, K+, and Ca2+) on chemical deactivation of commercial SCR catalyst by bromides. Chinese J. Catal. 39(4), 710–717. DOI: 10.1016/S1872-2067(18)63011-6.10.1016/S1872-2067(18)63011-6Search in Google Scholar

12. Basąg, S., Kocoł, K., Piwowarska, Z., Rutkowska,M., Baran, R. & Chmielarz, L. (2017). Activating effect of cerium in hydrotalcite derived Cu–Mg–Al catalysts for selective ammonia oxidation and the selective reduction of NO with ammonia. React. Kinet. Mech. Catal. 121(1), 225–240. DOI: 10.1007/s11144-017-1141-y.10.1007/s11144-017-1141-ySearch in Google Scholar

13. Wu, X., Feng, Y., Du, Y., Liu, X., Zou, C. & Li, Z. (2019). Enhancing DeNOx performance of CoMnAl mixed metal oxides in low-temperature NH3-SCR by optimizing layered double hydroxides (LDHs) precursor template. Appl. Surf. Sci. 467–468, 802–810. DOI: 10.1016/j.apsusc.2018. in Google Scholar

14. Jabłońska, M., Nothdurft, K., Nocuń, M., Girman, V. & Palkovits, R. (2017). Redox-performance correlations in Ag–Cu–Mg–Al, Ce–Cu–Mg–Al, and Ga–Cu–Mg–Al hydro-talcite derived mixed metal oxides. Appl. Catal. B Environ. 207, 385–396. DOI: 10.1016/j.apcatb.2017. in Google Scholar

15. Chmielarz, L., Jabłońska, M., Strumiński, A., Piwowarska, Z., Węgrzyn, A., Witkowski, S. & Michalik, M. (2013). Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals. Appl. Catal. B Environ. 130–131, 152–162. DOI: 10.1016/j.apcatb.2012. in Google Scholar

16. Xu, Z.P., Zhang, J., Adebajo, M.O., Zhang, H. & Zhou, C. (2011). Catalytic applications of layered double hydroxides and derivatives. Appl. Clay Sci. 53(2), 139–150. DOI: 10.1039/C4CS00160E.10.1039/C4CS00160ESearch in Google Scholar

17. Forano, C., Costantino, U., Prévot, V. & Gueho, C.T. (2013). Layered Double Hydroxides (LDH). In F. Bergaya and G. Lagaly (Eds.), Handbook of clay science 745–782. Elsevier.10.1016/B978-0-08-098258-8.00025-0Search in Google Scholar

18. Rives, V. & Ulibarri, M.A. (1999). Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord. Chem. Rev. 181(1), 61–120. DOI: 10.1016/S0010-8545(98)00216-1.10.1016/S0010-8545(98)00216-1Search in Google Scholar

19. Meyn, M., Beneke, K. & Lagaly, G. (1990). Anion-exchange reactions of layered double hydroxides. Inorg. Chem. 29(26), 5201–5207. DOI: 10.1021/ic00351a013.10.1021/ic00351a013Search in Google Scholar

20. Jabłońska, M., Chmielarz, L. & Węgrzyn, A. Chemii, W. (2013). Selektywne katalityczne utlenianie (SCO) amoniaku do azotu i pary wodnej wobec mieszanych tlenków pochodzenia hydrotalkitowego – praca przeglądowa. Chemik. 8, 701–710. YADDA identificator: bwmeta1.element.baztech-6167861c-0171-499d-b857-8e5d837c4b2f.Search in Google Scholar

21. Prasanna, S.V., Kamath, P.V. & Shivakumara, C. (2007). Synthesis and characterization of layered double hydroxides (LDHs) with intercalated chromate ions. Mater. Res. Bull. 42(6), 1028–1039. DOI: 10.1016/j.materresbull.2006. in Google Scholar

22. Chmielarz, L., Ku, P., Majda, D. & Dziembaj, R. (2002). Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia. Appl. Catal. B Environ. 35, 195–210. DOI: 10.1016/S0926-3373(01)00254-5.10.1016/S0926-3373(01)00254-5Search in Google Scholar

23. Miyata, S. (1983). Anion-Exchange Properties of Hydrotalcite-Like Compounds. Clays Clay Miner. 31(4), 305–311. DOI: 10.1346/CCMN.1983.0310409.10.1346/CCMN.1983.0310409Search in Google Scholar

24. Wang, Q., Wu, Z., Tay, H.H., Chen, L., Liu, Y., Chang, J., Zhong, Z., Luo, J. & Borgna, A. (2011). High temperature adsorption of CO2 on Mg-Al hydrotalcite: Effect of the charge compensating anions and the synthesis pH. Catal. Today. 164(1), 198–203. DOI: 10.1016/j.cattod.2010. in Google Scholar

25. Li, K., Kumada, N., Yonesaki, Y., Takei, T., Kinomura, N., Wang, H. & Wang, C. (2010). The pH effects on the formation of Ni/Al nitrate form layered double hydroxides (LDHs) by chemical precipitation and hydrothermal method. Mater. Chem. Phys. 121(1–2), 223–229. DOI: 10.1016/j.matchemphys.2010. in Google Scholar

26. Ghosal, P.S., Gupta, A.K. & Ayoob, S. (2015). Effect of formation pH, molar ratio and calcination temperature on the synthesis of an anionic clay based adsorbent targeting defluoridation. Appl. Clay Sci. 116–117, 120–128. DOI: 10.1016/j. clay.2015.08.026.Search in Google Scholar

27. Comelli, N.,A., Ruiz, M.,L., Aparicio, M.S.L., Merino, N.A., Cecilia, J.A., Rodrínguez-Castellón, E., Lick, I.D. & Ponzi, M.I. (2018). Influence of the synthetic conditions on the composition, morphology of CuMgAl hydrotalcites and their use as catalytic precursor in diesel soot combustion reactions. Appl. Clay Sci. 157, 148–157. DOI: 10.1016/j.clay.2018. in Google Scholar

28. Ramos-Ramírez, E., Ortega, N.L.G., Soto, C.A.C., Gutiérrez, M.T.O. (2009). Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds. J. Hazard. 172(2–3), 1527–1531. DOI: 10.1016/j. jhazmat.2009.08.023.Search in Google Scholar

29. Prinetto, F., Ghiotti, G., Graffin, P. & Tichit, D. (2000). Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples. Micropor. Mesopor. Mater. 39(1–2), 229–247. DOI: 10.1016/S1387-1811(00)00197-9.10.1016/S1387-1811(00)00197-9Search in Google Scholar

30. Jabłońska, M., Arán, M.A., Beale, A.M., Delahay, G., Petitto, C., Nocuń, M. & Palkovits, R. (2019). Understanding the origins of N2O decomposition activity in Mn(Fe)CoAlOx hydrotalcite derived mixed metal oxides. Appl. Catal. B Environ. 243, 66–75. DOI: 10.1016/j.apcatb.2018. in Google Scholar

31. Wang, Z., Li, Q., Wang, L. & Shangguan, W. (2012). Simultaneous catalytic removal of NOx and soot particulates over CuMgAl hydrotalcites derived mixed metal oxides. Appl. Clay Sci. 55, 125–130. DOI: 10.1016/j.clay.2011. in Google Scholar

32. Mascolo, G. & Mascolo, M.C. (2015). On the synthesis of layered double hydroxides (LDHs) by reconstruction method based on the “memory effect”. Micropor. Mesopor. Mater. 214, 34–36. DOI: 10.1016/j.micromeso.2015. in Google Scholar

33. Rivera, J.A., Fetter, G. & Bosch, P. (2006). Microwave power effect on hydrotalcite synthesis. Micropor. Mesopor. Mater. 89(1–3), 306–314. DOI: 10.1016/j.micromeso.2005. in Google Scholar

34. Zhi, P.X. & Guo, Q.L. (2005). Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3: LDH formation mechanism. Chem. Mater. 17(5), 1055–1062. DOI: 10.1021/cm048085g.10.1021/cm048085gSearch in Google Scholar

35. Genty, E., Brunet, J., Poupin, C., Casale, S., Capelle, S., Massiani, P., Siffert, S. & Cousin, R. (2015). Co-Al Mixed Oxides Prepared via LDH Route Using Microwaves or Ultrasound: Application for Catalytic Toluene Total Oxidation. Catalysts. 5(2), 851–867. DOI: 10.3390/catal5020851.10.3390/catal5020851Search in Google Scholar

36. Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catal. Today. 41(1–3), 53–71. DOI: 10.1016/S0920-5861(98)00038-8.10.1016/S0920-5861(98)00038-8Search in Google Scholar

37. Palmer, S.J., Soisonard, A. & Frost, R.L. (2009). Determination of the mechanism(s) for the inclusion of arsenate, vanadate, or molybdate anions into hydrotalcites with variable cationic ratio. J. Colloid Interface Sci. 329(2), 404–409. DOI: 10.1016/j.jcis.2008. in Google Scholar

38. Palomeque, J., Figueras, F. & Gelbard, G. (2006). Epoxidation with hydrotalcite-intercalated organotungstic complexes. Appl. Catal. A Gen. 300(2), 100–108. DOI: 10.1016/j. apcata.2005.10.037.Search in Google Scholar

39. Liu, K., Xu, Y., Yao, Z., Miras, H.N. & Song, Y.F. (2016). Polyoxometalate-Intercalated Layered Double Hydroxides as Efficient and Recyclable Bifunctional Catalysts for Cascade Reactions. ChemCatChem. 8(5), 929–937. DOI: 10.1002/cctc.201501365.10.1002/cctc.201501365Search in Google Scholar

40. Chen, F., Wu, X., Bu, R. & Yang, F. (2017). Co – Fe hydrotalcites for efficient removal of dye pollutants via synergistic adsorption and degradation. RSC Advances. 7, 41945–41954. DOI: 10.1039/C7RA07417D.10.1039/C7RA07417DSearch in Google Scholar

41. Stępniowski, W.J., Norek, M., Michalska-Domańska, M., Bombalska, A., Nowak-Stępniowska, A., Kwaśny, M. & Bojar, Z. (2012). Fabrication of anodic aluminum oxide with incorporated chromate ions. Appl. Surf. Sci. 259, 324–330. DOI: 10.1016/j.apsusc.2012. in Google Scholar

42. Zhou, W., Tian, P., Sun, F., He, M. & Chen, Q. (2016). Highly efficient transformation of alcohol to carbonyl compounds under a hybrid bifunctional catalyst originated from metalloporphyrins and hydrotalcite. J. Catal. 335, 105–116. DOI: 10.1016/j.jcat.2015. in Google Scholar

43. Conterosito, E., Palin, L., Antonioli, D. & Viterbo, D. (2015). Structural Characterisation of Complex Layered Double Hydroxides and TGA-GC-MS Study on Thermal Response and Carbonate Contamination in Nitrate- and Organic-Exchanged Hydrotalcites. Chem.; Eur. J. 21, 14975–14986. DOI: 10.1002/chem.201500450.10.1002/chem.201500450Search in Google Scholar

44. Ciocan, C.E., Dumitriu, E., Cacciaguerra, T., Fajula, F. & Hulea, V. (2012). New approach for synthesis of Mo-containing LDH based catalysts. Catal. Today. 198(1), 239–245. DOI: 10.1016/j.cattod.2012. in Google Scholar

45. Dobrea, I.D., Ciocan, C.E., Dumitriu, E., Popa, M.I., Petit, E. & Hulea, V. (2015). Raman spectroscopy - Useful tool for studying the catalysts derived from Mo and V-oxyanionintercalated layered double hydroxides. Appl. Clay Sci. 104, 205–210. DOI: 10.1016/j.clay.2014. in Google Scholar

46. Montanari, B., Vaccari, A., Gazzano, M., Kässner, P., Papp, H., Pasel, J., Dziembaj, R., Makowski, W. & Lojewski, T. (1997). Characterization and activity of novel copper-containing catalysts for selective catalytic reduction of NO with NH3. Appl. Catal. B Environ. 13, 205–217. DOI: 10.1016/S0926-3373(96)00106-3.10.1016/S0926-3373(96)00106-3Search in Google Scholar

47. Twu, J. & Dutta, K. (1990). Decavanadate Ion-Pillared Hydrotalcite: Spectroscopic Studies of the Thermal Decomposition Process. J. Catal. 510, 503–510. DOI: 10.1016/0021-9517(90)90196-Q.10.1016/0021-9517(90)90196-QSearch in Google Scholar

48. Jabłońska, M. & Palkovits, R. (2015). Nitrogen oxide removal over hydrotalcite-derived mixed metal oxides. Catal. Sci. Technol. 6(1), 49–72. DOI: 10.1039/c5cy00646e.10.1039/C5CY00646ESearch in Google Scholar

49. Carja, G., Dranca, S., Husanu, E. & Volf, I. (2009). Iron Containing Anionic Clays Supported With Iron Andcerium Oxides As Catalyst Precursors for NOx Reduction. Environ. Eng. Manag. J. 8(3), 553–557. DOI: 10.30638/eemj.2009.076.10.30638/eemj.2009.076Search in Google Scholar

50. Wu, X., Feng, Y., Du, Y., Liu, X., Zou, C. & Li, Z. (2019). Enhancing DeNOx performance of CoMnAl mixed metal oxides in low-temperature NH3-SCR by optimizing layered double hydroxides (LDHs) precursor template. Appl. Surf. Sci. 467–468, 802–810. DOI: 10.1016/j.apsusc.2018. in Google Scholar

Recommended articles from Trend MD