1. bookVolume 20 (2018): Issue 4 (December 2018)
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Comparison of photoacoustic, diffuse reflectance, attenuated total reflectance and transmission infrared spectroscopy for the study of biochars

Published Online: 11 Jan 2019
Page range: 75 - 83
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English

Four infrared spectroscopic techniques - photoacoustic (PAS), diffuse reflectance (DRS), attenuated total reflectance (ATR) and transmission (TS) - were evaluated for the qualitative analysis of the biochar obtained from willow feedstock during pyrolysis. Increase in pyrolysis temperature resulted in more aromatic and carbonaceous structure of biochars. These changes could easily be detected from Fourier transform infrared (FT-IR) spectral differences. The comparison of the spectra obtained by the four FT-IR techniques allowed to conclude that there are differences in the spectra acquired using different IR technique caused by different signal acquisition. PAS and ATR were the best techniques used in order to obtain spectra with smooth and sharp peaks, in contrast to TS, where bands were less-separated. DRS turned out to be the weakest of all techniques, due to poor spectral quality and poor separation of the bands.

Keywords

1. Tag, A.T., Duman G., Ucar, S. & Yanik, J. (2016). Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrol. 120, 200-206. DOI: 10.1016/j.jaap.2016.05.006.10.1016/j.jaap.2016.05.006Open DOISearch in Google Scholar

2. Lehmann, J., Czimczik, C., Laird, D. & Sohi, S. (2009). Stability of biochar in soil, In Biochar for Environmental Management: Science and Technology; Lehmann, J., Stephen, J., Eds.; Earthscan Publ.: London, 183-205.Search in Google Scholar

3. Yang, C.Q., Simms, J.R. (1995). Comparison of photoacoustic, diffuse reflectance and transmission infrared spectroscopy for the study of carbon fibers. Fuel 74, 543-548. DOI: 10.1016/0016-2361(95)98357-K.10.1016/0016-2361(95)98357-Open DOISearch in Google Scholar

4. Gomez-Serrano, V., Piriz-Almeida, F., Duran-Valle, C.J. &Pastor-Villegas, J. (1999) Formation of oxygen structures by air activation. A study by FT-IR spectroscopy. Carbon 37, 1517-1528. DOI: 10.1016/S0008-6223(99)00025-1.10.1016/S0008-6223(99)00025-1Open DOISearch in Google Scholar

5. Yarwood, J. (1993). Fourier Transform Infrared Reflection Spectroscopy for surface analysis Analytical Proceedings, Surface Analysis 30, 13-18.Search in Google Scholar

6. Kim, K.H., Kim, J.Y., Cho, T.S. & Choi, J.W. (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technol. 118, 158-162. DOI: 10.1016/j.biortech.2012.04.094.10.1016/j.biortech.2012.04.094Open DOISearch in Google Scholar

7. Ghani, W.A.K., Azlina, W. & Da Silva, G. (2014). Sawdust- derived biochar: Characterization and CO2 adsorption/ desorption study. J. Appl. Sci. 14, 1450-1454. DOI: 10.3923/ jas.2014.1450.1454.10.3923/jas.2014.1450.1454Open DOISearch in Google Scholar

8. Mukome, F.N.D., Zhang, X., Silva, L.C.R., Six, J. & Parikh, S.J. (2013). Use of chemical and physical characteristics to investigate trends in biochar feedstock. J. Agric. Food Chem. 61, 2196-2204. DOI: 10.1021/jf3049142.Search in Google Scholar

9. Mašek, O., Budarin, V., Gronnow, M., Crombie, K. &Brownsort, P. (2013). Microwave and slow pyrolysis biochar - comparison of physical and functional properties. J. Anal. Appl. Pyrolysis 100, 41-48. DOI: 10.1016/j.jaap.2012.11.015.10.1016/j.jaap.2012.11.015Open DOISearch in Google Scholar

10. Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M. & Ro, K.S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technol. 107, 419-428. DOI: 10.1016/j. biortech.2011.11.084.Search in Google Scholar

11. Liu, Y., He, Z. & Uchimiya, M. (2015). Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. Modern Appl. Sci. 9, 246-253. DOI: 10.5539/mas.v9n4p246.10.5539/mas.v9n4p246Open DOISearch in Google Scholar

12. Kieluweit, M., Nico, P.S., Johnson, M.G. & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. & Technol. 44, 1247-1253. DOI: 10.1021/es9031419.10.1021/es9031419Open DOISearch in Google Scholar

13. Chia, C.H., Gong, B., Joseph, S.D., Marjo, C.E., Munroe P. & Rich A.M. (2012). Imaging of mineral-enriched biochar by FTIR, Raman and SEM-EDX. Vibrational Spectroscopy 62, 248-257. DOI: 10.1016/j.vibspec.2012.06.006.10.1016/j.vibspec.2012.06.006Open DOISearch in Google Scholar

14. Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H. & Nadeem, M. (2013). Pyrolysis temperature induces changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technol. 131, 374-379. DOI: 10.1016/j.biortech.2012.12.165.10.1016/j.biortech.2012.12.165Open DOISearch in Google Scholar

15. Abdulraazaq, H., Jol, H., Husni, A. & Abu-Bakr, R. (2014). Characterization and stabilization of biochar obtained from empty fruit bunch, wood and rice husk. BioResources 9, 2888-2898. DOI: 10.15376/biores.9.2.2888-2898.Search in Google Scholar

16. Angin, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technol. 128, 593-597. DOI: 10.1016/j.biortech.2012.10.150.10.1016/j.biortech.2012.10.150Open DOISearch in Google Scholar

17. Jung, K.W., Jeong, T.U., Kang, H.J., Ahn, K.H. (2016). Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution. Bioresource Technol. 211, 108-116. DOI: 10.1016/j. biortech.2016.03.066.10.1016/j.biortech.2016.03.066Open DOISearch in Google Scholar

18. Qiu, Y., Cheng, H., Xu, C. & Sheng, G.D. (2008). Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Research 42, 567-574. DOI: 10.1016/j.watres.2007.07.051.10.1016/j.watres.2007.07.051Open DOISearch in Google Scholar

19. Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M.A. & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11, 6613-6621. DOI: 10.5194/bgd-11-11727-2014.10.5194/bgd-11-11727-2014Open DOISearch in Google Scholar

20. Harris, K., Gaskin, J., Cabrera, M., Miller, W. & Das, K.C. (2013). Characterization and mineralization rates of low temperature peanut hull and pine chip biochars. Agronomy 3 (2), 294-312. DOI: 10.3390/agronomy3020294.10.3390/agronomy3020294Open DOISearch in Google Scholar

21. Wang, C., Tu, Q., Dong, D., Strong, P.J., Wang, H., Sun, B. & Wu, W. (2014). Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J. Hazard. Mater. 280, 409-416. DOI: 10.1016/j.jhazmat.2014.08.030.10.1016/j.jhazmat.2014.08.030Open DOISearch in Google Scholar

22. Cao, X. & Harris, W. (2010). Properties of dairy-manurederived biochar pertinent to its potential use in remediation. Bioresource Technol. 101, 5222-5228. DOI: 10.1016/j.biortech. 2010.02.052.10.1016/j.biortech.2010.02.052Open DOISearch in Google Scholar

23. Michaelian, K.H. (2010). Photoacoustic IR spectroscopy, 2nd Ed.,Wiley-VCH Verlag GMBH&Co.Search in Google Scholar

24. Brewer, C.E., Schmidt-Rohr, K., Satrio, J.A. & Brown, R.C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy 28, 386-396. DOI: 10.1002/ep.10378.10.1002/ep.10378Open DOISearch in Google Scholar

25. Yuan, J.H., Xu, R.K. & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol. 102, 3488-3497. DOI: 10.1016/j.biortech.2010.11.018.10.1016/j.biortech.2010.11.018Open DOISearch in Google Scholar

26. Oleszczuk, P., Jośko, I., Futa, B., Pasieczna-Patkowska, S., Pałys, E. & Kraska, P. (2014). Effect of pesticides on microorganisms, enzymatic activity and plant in biocharamended soil. Geoderma 214-215, 10-18. DOI: 10.1016/j. geoderma.2013.10.010.10.1016/j.geoderma.2013.10.010Open DOISearch in Google Scholar

27. Zielińska, A., Oleszczuk, P., Charmas, B., Skubiszewska- -Zięba, J. & Pasieczna-Patkowska, S. (2015). Effect of sewage sludge properties on the biochar characteristics. J. Anal. Appl. Pyrolysis 112, 201-213. DOI: 10.1016/j.jaap.2015.01.025.10.1016/j.jaap.2015.01.025Open DOISearch in Google Scholar

28. Gogna, M. & Goacher, R.E. (2018). Comparison of three Fourier transform infrared spectroscopy sampling techniques for distinction between lignocellulose samples. BioResources 13(1), 846-860. DOI: 10.15376/biores.13.1.846-860.Search in Google Scholar

29. Faix, O. & Böttcher, J.H. (1992). The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. Holz als Roh- und Werkstoff 50(6), 221-226. DOI: 10.1007/BF02650312.10.1007/BF02650312Open DOISearch in Google Scholar

30. Zielińska, A. & Oleszczuk, P. (2015). The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass & Bioenergy 75, 235-244. DOI: 10.1016/j.biombioe.2015.02.019.10.1016/j.biombioe.2015.02.019Open DOISearch in Google Scholar

31. Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Ahmedna, M., Rehrah, D., Watts, D.W., Busscher, W.J. & Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals Environ. Sci. 3, 195-206.Search in Google Scholar

32. Gregg, S.J. & Sing, K.S.W. (1982). Adsorption, Surface Area and Porosity, Academic Press, London.Search in Google Scholar

33. Qui, Y. & Ling, F. (2006). Role of surface functionality in the adsorption of anionic dyes on modified polymeric sorbents. Chemosphere 64, 963-971. DOI: 10.1016/j.chemosphere.2006.01.003.10.1016/j.chemosphere.2006.01.003Open DOISearch in Google Scholar

34. Zawadzki, J. (1989). Infrared Spectroscopy in Surface Chemistry of Carbons, in: Chemistry and Physics of Carbon, Vol. 21, Thrower, P.A., Ed.; Dekker: New York.Search in Google Scholar

35. Morterra, C. & Low, M.J.D. (1982). The nature of the 1600 cm−1 band of carbons. Spectroscopy Letters 15, 689-697.Search in Google Scholar

36. Morterra, C., O’Shea, M.L., Low, M.J.D. (1988). Infrared studies of carbons - IX. The vacuum pyrolysis of non-oxygen- -containing materials: PVC. Materials Chemistry and Physics 20, 123-144.Search in Google Scholar

37. Chukanov, N.V. (2014). Infrared spectra of mineral species, Extended Library, Vol. 1, Springer.Search in Google Scholar

38. Bourke, J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T. & Antal, M.J. (2007). Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized Charcoal. Industrial Engin. Chem. Res. 46, 5954-5967. DOI: 10.1021/ie070415u.10.1021/ie070415uOpen DOISearch in Google Scholar

39. Lua, A.C., Yang, T. & Guo, J. (2004). Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J. Anal. Appl. Pyrolysis 72, 279-287. DOI: 10.1016/j.jaap.2004.08.001.10.1016/j.jaap.2004.08.001Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo