1. bookVolume 20 (2018): Issue 4 (December 2018)
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

Preparation, Characterization, and Application of N,S-codoped TiO2/Montmorillonite Nanocomposite for the Photocatalytic Degradation of Ciprofl oxacin: Optimization by Response Surface Methodology

Published Online: 11 Jan 2019
Page range: 66 - 74
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

An N,S-codoped TiO2/Montmorillonite nanocomposite, as a photocatalyst, was synthesized in the sol-gel method and used for the degradation of ciprofloxacin (Cip) in an aqueous solution. N,S-codoped TiO2/Montmorillonte was characterized by powder X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), and X-ray fluorescence (XRF) analyzes. A central composite design (CCD) was used to optimize the variables for the removal of Cip by the N,S-codoped TiO2/Montmorillonite. A maximum decomposition of 92% of Cip was achieved in optimum conditions. The band gap value for the nanocomposite was 2.77 eV. Moreover, with the use of nanocomposite in the four consecutive runs, the final removal efficiency was 66%. The results show that the N,S-codoped TiO2/ Montmorillonite under simulated sunlight irradiation can be applied as an effective photocatalyst for the removal of Cip from aqueous solutions.

Keywords

1. Klavarioti, M., Mantzavinos, D. & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35(2), 402-417. DOI: 10.1016/j.envint.2008.07.009.10.1016/j.envint.2008.07.009Open DOISearch in Google Scholar

2. Parsa, J.B., Panah, T.M. & Chianeh, F.N. (2016). Removal of ciprofloxacin from aqueous solution by a continuous flow electro-coagulation process. Korean J. Chem. Eng. 33(3), 893-901. DOI: 10.1007/s11814-015-0196-6.10.1007/s11814-015-0196-6Open DOISearch in Google Scholar

3. Hassani, A., Khataee, A., Karaca, S., Karaca, C. & Gholami, P. (2016). Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason. Sonochem. 35, 1-12. DOI: 10.1016/j.ultsonch.2016.09.027.10.1016/j.ultsonch.2016.09.027Open DOISearch in Google Scholar

4. Hassani, A., Khataee, A. & Karaca, S. (2015). Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling. J. Mol. Catal. A Chem. 409, 149-161. DOI: 10.1016/j.molcata.2015.08.020.10.1016/j.molcata.2015.08.020Open DOISearch in Google Scholar

5. Gharbani, P., Mehrizad, A. & Jafarpour, I. (2015). Adsorption of penicillin by decaffeinated tea waste. Polish J. Chem. Technol. 17(3), 95-9. DOI: 10.1515/pjct-2015-0056.10.1515/pjct-2015-0056Open DOISearch in Google Scholar

6. Hassani, A., Khataee, A., Karaca, S. & Fathinia, M. (2017). Degradation of mixture of three pharmaceuticals by photocatalytic ozonation in the presence of TiO2/montmorillonite nanocomposite: Simultaneous determination and intermediates identification. J. Environ. Chem. Eng. 5(2), 1964-76. DOI: 10.1016/j.jece.2017.03.032.10.1016/j.jece.2017.03.032Open DOISearch in Google Scholar

7. Hassani, A., Khataee, A., Fathinia, M. & Karaca, S. (2018). Photocatalytic ozonation of ciprofloxacin from aqueous solution using TiO2/MMT nanocomposite: Nonlinear modeling and optimization of the process via artificial neural network integrated genetic algorithm. Process Saf. Environ. Prot. 116, 365-76. DOI: 10.1016/j.psep.2018.03.013.10.1016/j.psep.2018.03.013Open DOISearch in Google Scholar

8. Kümmerer, K. (2009). Antibiotics in the aquatic environment - A review - Part I. Chemosphere 75(4), 417-434. DOI: 10.1016/j.chemosphere.2008.11.086.Search in Google Scholar

9. Ghasemi, Z., Younesi, H. & Zinatizadeh, A.A. (2016). Preparation, characterization and photocatalytic application of TiO2/ Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology. Chemosphere 159, 552-564. DOI: 10.1016/j.chemosphere.2016.06.058.10.1016/j.chemosphere.2016.06.058Open DOISearch in Google Scholar

10. Daghrir, R., Drogui, P., Delegan, N. & Khakani, M.A.E. (2013). Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2 photoanode under sunlight irradiations. Water Res. 47(17), 6801-10. DOI: 10.1016/j.watres.2013.09.011.Search in Google Scholar

11. Wojcieszak, D., Mazur, M., Kaczmarek, D., Morgiel, J., Poniedziałek, A. & Domaradzki, J., et al. (2015). Influence of the structural and surface properties on photocatalytic activity of TiO2:Nd thin films. Polish J. Chem. Technol. 17(2), 103-11. DOI: 10.1515/pjct-2015-0047.10.1515/pjct-2015-0047Open DOISearch in Google Scholar

12. Dulian, P., Buras, M. & Witold, Ż. (2016). Modyfication of photocatalytic properties of titanium dioxide by mechanochemical method. Polish J. Chem. Technol. (110), 68-71.Search in Google Scholar

13. Rengifo-Herrera, J.A., Pierzchala, K., Sienkiewicz, A., Forro, L., Kiwi, J., Moser, J.E. & Pulgarin, C. (2010). Synthesis, characterization, and photocatalytic activities of nanoparticulate N, S-codoped TiO2 having different surface-to-volume ratios. J. Phys. Chem. C. 114(6), 2717-2723. DOI: 10.1021/jp910486f.10.1021/jp910486fOpen DOISearch in Google Scholar

14. Li, Y. & Kim, S.J. (2005). Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability. J. Phys. Chem. B., 109(25), 12309-12315. DOI: 10.1021/jp0512917.10.1021/jp0512917Open DOISearch in Google Scholar

15. Zhang, G., Ding, X., Hu, Y., Huang, B., Zhang, X. & Qin, X., et al. (2008). Photocatalytic Degradation of 4BS Dye by N, S-Codoped TiO2 Pillared Montmorillonite Photocatalysts under Visible-Light Irradiation. J. Phys. Chem. C., 112, 17994-17997. DOI: 10.1016/j.jpcs.2007.10.090.10.1016/j.jpcs.2007.10.090Open DOISearch in Google Scholar

16. Eslami, A., Amini, MM., Yazdanbakhsh, AR., Mohseni- Bandpei, A., Safari, AA. & Asadi, A. (2016). N,S co-doped TiO2 nanoparticles, and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: a comparative study. J. Chem. Technol. Biotechnol. 91(10), 2693-2704. DOI: 10.1002/jctb.4877.Search in Google Scholar

17. Xiang, Q., Yu, J. & Jaroniec, M. (2011). Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13(11), 4853-61. DOI: 10.1039/ C0CP01459A.10.1039/C0CP01459Open DOISearch in Google Scholar

18. Wu, Q., Li, Z., Hong, H., Yin, K. & Tie, L. (2010). Adsorption and intercalation of ciprofloxacin on montmorillonite. Appl. Clay Sci. 50(2), 204-211. DOI:10.1016/j.clay.2010.08.00110.1016/j.clay.2010.08.001Open DOISearch in Google Scholar

19. Yuan, L., Huang, D., Guo, W., Yang, Q. & Yu, J. (2011). TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl. Clay. Sci. 53(2), 272-278. DOI: 10.1016/j. clay.2011.03.013.10.1016/j.clay.2011.03.013Open DOISearch in Google Scholar

20. Carrasquillo, A.J., Bruland, G.L., Mackay, A.A. & Vasudevan, D. (2008). Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environ. Sci. Technol. 42(20), 7634-7642. DOI: 10.1021/es801277y.10.1021/es801277yOpen DOISearch in Google Scholar

21. Sun, H., Peng, T., Liu, B. & Xian, H. (2015). Effects of montmorillonite on phase transition and size of TiO2 nanoparticles in TiO2/montmorillonite nanocomposites. Appl. Clay Sci. 114, 440-446. DOI: 10.1016/j.clay.2015.06.026.10.1016/j.clay.2015.06.026Open DOISearch in Google Scholar

22. Kameshima, Y., Tamura, Y. Nakajima, A. & Okada, K. (2009). Preparation and properties of TiO2/montmorillonite composites. Appl. Clay Sci. 45(1-2), 20-3. DOI: 10.1016/j. clay.2009.03.005.10.1016/j.clay.2009.03.005Open DOISearch in Google Scholar

23. An, T., Chen, J., Li, G., Ding, X., Sheng, G. & Fu, J., et al. (2008). Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts. Degradation of decabromodiphenyl ether (BDE 209). Catal. Today 139(1-2), 69-76. DOI: 10.1016/j.cattod.2008.08.024.10.1016/j.cattod.2008.08.024Open DOISearch in Google Scholar

24. Chen, D., Du, G., Zhu, Q. & Zhu, F. (2013). Synthesis and characterization of TiO2 pillared montmorillonites: Application for methylene blue degradation. J. Colloid Interface Sci. 409, 151-7. DOI: 10.1016/j.jcis.2013.07.049.10.1016/j.jcis.2013.07.049Open DOISearch in Google Scholar

25. Shaban, Y.A. & Khan, S.U.M. (2009). Carbon modified (CM)-n-TiO2 thin films for efficient water splitting to H2 and O2 under xenon lamp light and natural sunlight illuminations. J. Solid State Electrochem. 13(7), 1025-36. DOI: 10.1007/ s10008-009-0823-4.10.1007/s10008-009-0823-4Open DOISearch in Google Scholar

26. Zhang, G., Ding, X, He, F., Yu, X., Zhou, J. & Hu, Y., et al. (2008). Preparation and photocatalytic properties of TiO2- -montmorillonite doped with nitrogen and sulfur. J. Phys. Chem. Solids. 69(5-6), 1102-1106. DOI: 10.1016/j.jpcs.2007.10.090.10.1016/j.jpcs.2007.10.090Open DOISearch in Google Scholar

27. Sohrabi, S. & Akhlaghian, F. (2016). Modeling and optimization of phenol degradation over copper-doped titanium dioxide photocatalyst using response surface methodology. Process Saf. Environ. Prot. 99, 120-128. DOI: 10.1016/j. psep.2015.10.016.10.1016/j.psep.2015.10.016Open DOISearch in Google Scholar

28. Karimi, L. (2017). Combination of mesoporous titanium dioxide with MoS2 nanosheets for high photocatalytic activity. Polish J. Chem. Technol. 19(2), 56-60. DOI: 10.1515/ pjct-2017-0028.10.1515/pjct-2017-0028Open DOISearch in Google Scholar

29. Fatimah, I., Wang, S. & Wulandari, D. (2011). ZnO/ montmorillonite for photocatalytic and photochemical degradation of methylene blue. Appl. Clay Sci. 53(4), 553-560. DOI: 10.1016/j.clay.2011.05.001.10.1016/j.clay.2011.05.001Open DOISearch in Google Scholar

30. Kattiparambil Manoharan, R. & Sankaran, S. (2017). Photocatalytic degradation of organic pollutant aldicarb by non-metal-doped nanotitania: synthesis and characterization. Environ. Sci. Pollut. Res. DOI: 10.1007/s11356-017-0350-2.10.1007/s11356-017-0350-2Open DOISearch in Google Scholar

31. Liu, J., Li, X., Zuo, S. & Yu, Y. (2007). Preparation and photocatalytic activity of silver and TiO2 nanoparticles/ montmorillonite composites. Appl. Clay Sci. 37(3), 275-280. DOI: 10.1016/j.clay.2007.01.008.10.1016/j.clay.2007.01.008Open DOISearch in Google Scholar

32. Han, C., Pelaez, M., Likodimos, V., Kontos, AG, Falaras, P. & O’Shea, K., et al. (2011). Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B. Environ. 107(1-2), 77-87. DOI: 10.1016/j.apcatb.2011.06.039.10.1016/j.apcatb.2011.06.039Open DOISearch in Google Scholar

33. Salarian, A.A., Hami, Z., Mirzaie, N., Mohseni, SM., Asadi, A. & Bahrami, H, et al. (2016). N-doped TiO2 nanosheets for photocatalytic degradation and mineralization of diazinon under simulated solar irradiation: Optimization and modeling using a response surface methodology. J. Mol. Liq. 220, 183-191. DOI: 10.1016/j.molliq.2016.04.060.10.1016/j.molliq.2016.04.060Open DOISearch in Google Scholar

34. Rasouli, F., Aber, S., Salari, D. & Khataee, A.R. (2014). Optimized removal of Reactive Navy Blue SP-BR by organo-montmorillonite based adsorbents through central composite design. Appl. Clay Sci. 87, 228-234. DOI: 10.1016/j. clay.2013.11.010.10.1016/j.clay.2013.11.010Open DOISearch in Google Scholar

35. Khataee, A.R., Zarei, M. & Asl, S.K. (2010). Photocatalytic treatment of a dye solution using immobilized TiO2 nanoparticles combined with photoelectro-Fenton process: Optimization of operational parameters. J. Electroanal. Chem. 648, 143-150. DOI: 10.1016/j.jelechem.2010.07.017.10.1016/j.jelechem.2010.07.017Open DOISearch in Google Scholar

36. Moussavi, G., Alahabadi, A., Yaghmaeian, K. & Eskandari, M. (2013). Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chem. Eng. J. 217, 119-28. DOI: 10.1016/j.cej.2012.11.069.10.1016/j.cej.2012.11.069Open DOISearch in Google Scholar

37. Carmosini, N. & Lee, L.S. (2009). Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials. Chemosphere 77, 813-820. DOI: 10.1016/j.chemosphere. 2009.08.003.10.1016/j.chemosphere.2009.08.003Open DOISearch in Google Scholar

38. Gu, C. & Karthikeyan, K.G. (2005). Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ. Sci. Technol. 39(23), 9166-9173. DOI: 10.1021/ es051109f.10.1021/es051109fOpen DOISearch in Google Scholar

39. Abdullah, A.H., Moey, H.J.M. & Yusof, N.A. (2012). Response surface methodology analysis of the photocatalytic removal of Methylene Blue using bismuth vanadate prepared via polyol route. J. Environ. Sci. (China) 24(9), 1694-701. DOI: 10.1016/S1001-0742(11)60966-2.10.1016/S1001-0742(11)60966-2Open DOISearch in Google Scholar

40. An, T., Yang, H., Li, G., Song, W., Cooper W.J. & Nie, X. (2010). Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl. Catal. B Environ. 94(3-4), 288-94. DOI: 10.1016/j.apcatb.2009.12.002.10.1016/j.apcatb.2009.12.002Open DOISearch in Google Scholar

41. Massoudinejad, M., Ghaderpoori, M., Shahsavani, A., Jafari, A., Kamarehie, B., Ghaderpoury, A. & Amini, M.M. (2018). Ethylenediamine-functionalized cubic ZIF-8 for arsenic adsorption from aqueous solution: Modeling, isotherms, kinetics and thermodynamics. J. Mol. Liq. 255, 263-8. DOI: 10.1016/j. molliq.2018.01.163.Search in Google Scholar

42. Gad-Allah, T.A., Ali, M.E.M.M. & Badawy, M.I. (2011). Photocatalytic oxidation of ciprofloxacin under simulated sunlight. J. Hazard. Mater. 186(1), 751-755. DOI: 10.1016/j. jhazmat.2010.11.066.10.1016/j.jhazmat.2010.11.066Open DOISearch in Google Scholar

43. Kuriechen, S.K., Murugesan, S., Raj, S.P. & Maruthamuthu, P. (2011). Visible light assisted photocatalytic mineralization of Reactive Red 180 using colloidal TiO2 and oxone. Chem. Eng. J. 174(2-3), 530-538. DOI: 10.1016/j.cej.2011.09.024.10.1016/j.cej.2011.09.024Open DOISearch in Google Scholar

44. Modirshahla, N., Hassani, A., Behnajady, M.A. & Rahbarfam, R. (2011). Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts. Desalination 271(1-3), 187-192. DOI: 10.1016/j.desal.2010.12.027.10.1016/j.desal.2010.12.027Open DOISearch in Google Scholar

45. Akbari-Adergani, B., Saghi, M.H., Eslami, A., Mohseni- -Bandpei, A. & Rabbani, M. (2017). Removal of Dibutyl Phthalate from Aqueous Environments Using a Nanophotocatalytic Fe, Ag-ZnO/VIS-LED System: Modeling and Optimization. Environ. Technol. 0, 1-31. DOI: 10.1080/09593330.2017.1332693.Search in Google Scholar

46. El-Sheikh, S.M., Zhang, G., El-Hosainy, H.M., Ismail, A.A., O’Shea, K.E., Falaras, P., Kontos, A.G. & Dionysiou, D.D. (2014). High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J. Hazard. Mater. 280, 723-33. DOI: 10.1016/j.jhazmat.2014.08.038.10.1016/j.jhazmat.2014.08.038Open DOISearch in Google Scholar

Plan your remote conference with Sciendo