Open Access

Effect of Lambda-Cyhalothrin - An Insecticide from the Group of Synthetic Pyrethroids - on the Concentrations of NF-ĸB and VEGFR2 in the Liver of Albino Swiss Mice as Markers of its Damage


Cite

1. Glynne-Jones, A. Pyrethrum. Pest Outlook,12(5),195–8.2001;10.1039/b108601b Search in Google Scholar

2. Prakash, A.; Rao, J. Botanical Pesticides in Agriculture. Boca Raton, FL, USA: CRC Press Inc; pp.480. 1997; Search in Google Scholar

3. Bhat, B.K.; Pyrethrum flowers: production, chemistry, toxicology, and uses. New York: Oxford University Press; 1995; Search in Google Scholar

4. Staudinger, H.; Ruzicka, L. Insektentötende Stoffe III. Konstitution des Pyrethrolons. Helvetica Chimica Acta,7(1),212–35. 1924;10.1002/hlca.19240070126 Search in Google Scholar

5. Farnham, A.W. Genetics of resistance of pyrethroid-selected houseflies, Musca domestica L. Pesticide Science;4(4),513–20. 1973;10.1002/ps.2780040410 Search in Google Scholar

6. Lopez, O.; Fernandez-Bolanos, J. Green Trends in Insect Control. Cambridge, UK: Royal Society of Chemistry; 2011;10.1039/9781849732901 Search in Google Scholar

7. Bradberry, S.; Cage S.A.; Proudfoot, A.T; Vale, J.A. Poisoning due to pyrethroids. Toxicological Reviews, 24. 93–106. 2005;10.2165/00139709-200524020-00003 Search in Google Scholar

8. Selim, S.; Preiss, F.J.; Gabriel, K.L.; Jonkman, J,H.; Osimitz, T,G. Absorption and mass balance of piperonyl butoxide following an 8-h dermal exposure in human volunteers. Toxicol. Lett,107(1–3),207–217.1999;10.1016/S0378-4274(99)00049-1 Search in Google Scholar

9. Casida, J.E.; Quistad, G.B. Golden age of insecticide research: past, present, or future? Annu Rev Entomol,,3:1–16.1998;10.1146/annurev.ento.43.1.19444749 Search in Google Scholar

10. Naumann, K. Synthetic Pyrethroid Insecticides: Structures and Properties. Berlin Heidelberg: Springer-Verlag; 1990;10.1007/978-3-642-74849-3 Search in Google Scholar

11. Soderlund, D.M.; Bloomquist, J.R. Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol,34,77–96.1989;10.1146/annurev.en.34.010189.0004532539040 Search in Google Scholar

12. Laskowski, D.A. Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol,174,49–170.2002; 2021 Vol. 75 Issue 210.1007/978-1-4757-4260-2_312132343 Search in Google Scholar

13. Vasquez, M.E.; Gunasekara A.S; Cahill, T.M; Tjeerdema, R.S. Partitioning of etofenprox under simulated California rice-growing conditions. Pest Management Science,66(1),28–34.2010;10.1002/ps.1826 Search in Google Scholar

14. Wielgomas, B.; Piskunowicz, M. Biomonitoring of pyrethroid exposure among rural and urban populations in northern Poland. Chemosphere., 93(10):2547-53.2013;10.1016/j.chemosphere.2013.09.070 Search in Google Scholar

15. Verschoyle, R.D.; Aldridge, W.N. Structure-activity relationships of some pyrethroids in rats. Arch. Toxicol,45(4),325–329.1980;10.1007/BF00293813 Search in Google Scholar

16. Lawrence, L.J.; Casida, J,E. Pyrethroid toxicology: Mouse intracerebral structure-toxicity relationships. Pestic. Biochem. Physiol,18(1),9–14.1982;10.1016/0048-3575(82)90082-7 Search in Google Scholar

17. Gray, A,J. Pyrethroid structure-toxicity relationships in mammals. Neurotoxicology.6(2),127–37.1985; Search in Google Scholar

18. Vijverberg, H,P.;, van den Bercken, J. Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol,21(2),105–26.1990;10.3109/104084490090898751964560 Search in Google Scholar

19. Chinn. K.; Narahashi, T. Stabilization of sodium channel states by deltamethrin in mouse neuroblastoma cells. J. Physiol,380,191–207.1986;10.1113/jphysiol.1986.sp01628011829322441036 Search in Google Scholar

20. Davies, T.G.E.; Field, L.M.; Usherwood, P.N.R.; Williamson, M.S.DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 9 (3), 151–62. 2007;10.1080/1521654070135204217487686 Search in Google Scholar

21. Soderlund, D.M. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol, 86(2),165-81.2012;10.1007/s00204-011-0726-x321823721710279 Search in Google Scholar

22. Morgan, M.K. Children’s exposures to pyrethroid insecticides at home: a review of data collected in published exposure measurement studies conducted in the United States. Int J Environ Res Public Health, 9(8):2964-85.2012;10.3390/ijerph9082964344759923066409 Search in Google Scholar

23. Saillenfait, A.M.; Ndiaye, D.; Sabate, J.P. Pyrethroids: exposure and health effects-an update. Int J Hyg Environ Heallth, 218(3):281-92.2015;10.1016/j.ijheh.2015.01.00225648288 Search in Google Scholar

24. Al-Omar, M.; Naz, M.; Mohammed, S.A.A.; Mansha, M.; Ansari, M.N.; Rehman, N.U.; Kamal. M.; Mohammed, H.A.; Yusuf, M.; Hamad, A.M.; Akhtar, N.; Khan, R,A. Pyrethroid-Induced Organ Toxicity and Anti-Oxidant-Supplemented Amelioration of Toxicity and Organ Damage: The Protective Roles of Ascorbic Acid and α-Tocopherol. Int J Environ Res Public Health, 17(17):6177.2020;10.3390/ijerph17176177750332732854455 Search in Google Scholar

25. Nieradko-Iwanicka, B.; Borzęcki, A. Subacute poisoning of mice with deltamethrin produces memory impairment, reduced locomotor activity, liver damage and changes in blood morphology in the mechanism of oxidative stress. Pharmacol Rep, 67 (3): 535-541.2015;10.1016/j.pharep.2014.12.01225933966 Search in Google Scholar

26. Han. B.; Lv, Z.; Zhang, X.; Lv, Y.; Li, S.; Wu, P.; Yang, Q.; Li, J.; Qu, B, Zhang Z. Deltamethrin induces liver fibrosis in quails via activation of the TGF-β1/Smad signaling pathway. Environ Pollut, 259:113870. 2020;10.1016/j.envpol.2019.11387031918140 Search in Google Scholar

27. Aouey, B.; Derbali, M.; Chtourou, Y.; Bouchard, M.; Khabir, A.; Fetoui, H. Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure. Environ Sci Pollut Res Int, 24(6):5841-5856. 2017;10.1007/s11356-016-8323-428058584 Search in Google Scholar

28. Li, Q.; Verma, I.M. NF-kappaB regulation in the immune system. Nat Rev Immunol,;2(10,:725–34.2002;10.1038/nri91012360211 Search in Google Scholar

29. Hayden, M.S.; Ghosh, S. Signaling to NF-kappaB. Genes Dev,18(18),2195–224.2004;10.1101/gad.122870415371334 Search in Google Scholar

30. Perkins, N,D. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol.,;8(1),49–62.2007;10.1038/nrm208317183360 Search in Google Scholar

31. Kumar, A.; Takada, Y.; Boriek, A.M; Aggarwal, B.B. Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl),82(7),434–48.2004;10.1007/s00109-004-0555-y15175863 Search in Google Scholar

32. Liu, T.; Zhang, L.; Joo, D.; Sun, S-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther,2,17023.2017;10.1038/sigtrans.2017.23566163329158945 Search in Google Scholar

33. Wang, N.; Liang, H.; Zen, K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol,5,614.2004;10.3389/fimmu.2014.00614424688925506346 Search in Google Scholar

34. Lawrence, T. The Nuclear Factor NF-κB Pathway in Inflammation. Cold Spring Harb. Perspect. Biol,;1(6). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882124/. (cited on April1,2021). 2009;10.1101/cshperspect.a001651 Search in Google Scholar

35. Pahl, H.L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogen,,18(49),6853–66.1999;10.1038/sj.onc.1203239 Search in Google Scholar

36. Bharti, A.C.; Aggarwal, B,B. Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol,64(5–6),883–8.2002;10.1016/S0006-2952(02)01154-1 Search in Google Scholar

37. Schwabe, R.F.; Seki, E.; Brenner, D,A. Toll-like receptor signaling in the liver. Gastroenterology,130(6),1886–900.2006;10.1053/j.gastro.2006.01.03816697751 Search in Google Scholar

38. Olsson, A-K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol,7(5),359–71.2006;10.1038/nrm191116633338 Search in Google Scholar

39. Semenza, G.L. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem,102(4),840–7.2007;10.1002/jcb.2152317891779 Search in Google Scholar

40. Moreira, I.S.; Fernandes, P.A.; Ramos, M.J. Vascular endothelial growth factor (VEGF) inhibition-a critical review. Anticancer Agents Med. Chem,7(2),223–245.2007;10.2174/18715200778005868717348829 Search in Google Scholar

41. Duffy, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF [Internet]. Landes Bioscience; [cited on 13 Feb 2021]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6482/2013; Search in Google Scholar

42. Tjwa, M.; Luttun, A.; Autiero, M.; Carmeliet, P. VEGF and PlGF: two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res,314(1),5–14.2003;10.1007/s00441-003-0776-313680354 Search in Google Scholar

43. Yamazaki, Y.; Morita, T. Molecular and functional diversity of vascular endothelial growth factors. Mol Divers,10(4),515–27.2006;10.1007/s11030-006-9027-316972015 Search in Google Scholar

44. Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol,59(2),455–67.2018; Search in Google Scholar

45. Elhalwagy, M.E.; Abd-Alrahman, S.H.; Nahas, A.A.; Ziada, R.M.; Mohamady, A.H. Hepatopancreatic intoxication of lambda cyhalothrin insecticide on albino rats. Int J Clin Exp Med, 8(5),7297-305. 2015; Search in Google Scholar

46. Kroeger, A.; Villegas, E.; Ordoñez-González, J.; Pabon, E.; Scorza, J.V. Prevention of the transmission of Chagas’ disease with pyrethroidimpregnated materials. Am J Trop Med Hyg,68(3),307–11.2003;10.4269/ajtmh.2003.68.307 Search in Google Scholar

47. Anadón, A.; Martínez, M.A; Martínez, M.; Castellano, V.; Ares, I.; Romero, A. Differential induction of cytochrome P450 isoforms and peroxisomal proliferation by cyfluthrin in male Wistar rats. Toxicol Lett,;220(2),135–42.2013;10.1016/j.toxlet.2013.04.01523639246 Search in Google Scholar

48. Hedges, L.; Brown, S.; MacLeod, A.K.;, Moreau, M.;, Yoon, M.; Creek, M.R.; Osimitz, T.G.; Lake, B.G. Metabolism of bifenthrin, β-cyfluthrin, λ-cyhalothrin, cyphenothrin and esfenvalerate by rat and human cytochrome P450 and carboxylesterase enzymes. Xenobiotica,50(12),1434-1442.2020;10.1080/00498254.2020.179574532672501 Search in Google Scholar

49. Fetoui, H.; Garoui, E.M,; Zeghal, N. Lambda-cyhalothrin-induced biochemical and histopathological changes in the liver of rats: ameliorative effect of ascorbic acid. Exp Toxicol Pathol,61(3),189–96.2009.;10.1016/j.etp.2008.08.00218835144 Search in Google Scholar

50. Fetoui, H.; Makni, M.; Garoui, E.M; Zeghal, N. Toxic effects of lambda-cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney: Involvement of oxidative stress and protective role of ascorbic acid. Exp Toxicol Pathol,62(6),593–9.2010;10.1016/j.etp.2009.08.00419735994 Search in Google Scholar

51. Fetoui. H.; Garoui, E.M.; Makni-Ayadi, F.; Zeghal, N. Oxidative stress induced by lambda-cyhalothrin (LTC) in rat erythrocytes and brain: Attenuation by vitamin C. Environ Toxicol Pharmacol, 26(2),225–31.2008;10.1016/j.etap.2008.04.00221783916 Search in Google Scholar

52. Abdallah, F.B.; Fetoui, H.; Fakhfakh, F.; Keskes, L. Caffeic acid and quercetin protect erythrocytes against the oxidative stress and the genotoxic effects of lambda-cyhalothrin in vitro. Hum Exp Toxicol.,31(1),92–100.2012;10.1177/096032711142430322027499 Search in Google Scholar

53. Aouey. B.; Derbali, M.; Chtourou, Y.; Bouchard, M.; Khabir, A.; Fetoui, H. Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure. Environ Sci Pollut Res Int, 24(6),5841–56.2017;10.1007/s11356-016-8323-428058584 Search in Google Scholar

54. Martínez, M.A.; Ares, I.; Rodríguez, J.L.; Martínez,M.; Roura-Martínez, D.; Castellano, V.; Lopez-Torres, B.; Martínez-Larrañaga, M.R.; Anadón, A. Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats. Sci Total Environ, 631: 1371–1382.2018;10.1016/j.scitotenv.2018.03.03029727961 Search in Google Scholar

55. Klimowska, A.; Amenda, K.; Rodzaj, W.; Wileńska, M.; Jurewicz, J.; Wielgomas, B. Evaluation of 1-year urinary excretion of eight metabolites of synthetic pyrethroids, chlorpyrifos, and neonicotinoids. Environ Int,145:106119. 2020;10.1016/j.envint.2020.10611932950790 Search in Google Scholar

56. Radwan, M.; Jurewicz, J.; Wielgomas, B.; Piskunowicz, M.; Sobala, W.; Radwan, P.; Jakubowski, L.; Hawuł,a W.; Hankme W. The association between environmental exposure to pyrethroids and sperm aneuploidy. Chemosphere,128:42-8. 2015;10.1016/j.chemosphere.2014.12.07725655817 Search in Google Scholar

57. Dziewirska, E.; Radwanm M.; Wielgomas, B.; Klimowska, A.; Radwan, P.; Kałużny, P.; Hanke, W.; Słodki, M.; Jurewicz, J. Human Semen Quality, Sperm DNA Damage, and the Level of Urinary Concentrations of 1N and TCPY, the Biomarkers of Nonpersistent Insecticides. Am J Mens Health,13(1):1557988318816598. 2019;10.1177/1557988318816598 Search in Google Scholar

58. Radwan, M.; Jurewicz, J.; Wielgomas, B.; Sobala, W.; Piskunowicz, M.; Radwan, P.; Hanke, W. Semen quality and the level of reproductive hormones after environmental exposure to pyrethroids. J Occup Environ Med,56(11):1113-9. 2014;10.1097/JOM.0000000000000297 Search in Google Scholar

59. Wielgomas, B.; Nahorski, W.; Czarnowski, W. Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of Northern Poland. Int J Hyg Environ Health, 216(3):295-300. 2013;10.1016/j.ijheh.2012.09.001 Search in Google Scholar

60. Klimowska, A.; Wielgomas, B. Off-line microextraction by packed sorbent combined with on solid support derivatization and GC-MS: Application for the analysis of five pyrethroid metabolites in urine samples. Talanta,176:165-171.2018;10.1016/j.talanta.2017.08.011 Search in Google Scholar

61. Wielgomas, B.; Piskunowicz, M. Biomonitoring of pyrethroid exposure among rural and urban populations in northern Poland. Chemosphere,93(10):2547-53.2013;10.1016/j.chemosphere.2013.09.070 Search in Google Scholar

62. Rodzaj, W.; Wileńska, M.; Klimowska, A.; Dziewirska, E.; Jurewicz, J.; Walczak-Jędrzejowska, R.; Słowikowska-Hilczer, J.; Hanke, W.; Wielgomas, B. Concentrations of urinary biomarkers and predictors of exposure to pyrethroid insecticides in young, Polish, urban-dwelling men. Sci Total Environ,773:145666.2021;10.1016/j.scitotenv.2021.145666 Search in Google Scholar

63. Jurewicz, J.; Radwan, M.; Wielgomas, B.; Sobala, W.; Piskunowicz, M.; Radwan, P.; Bochenek, M.; Hanke, W. The effect of environmental exposure to pyrethroids and DNA damage in human sperm. Syst Biol Reprod Med,61(1):37-43.2015;10.3109/19396368.2014.981886 Search in Google Scholar

64. Fetoui, H.; Feki, A.; Salah, G.B.; Kamoun, H.; Fakhfakh, F.; Gdoura, R. Exposure to lambda-cyhalothrin, a synthetic pyrethroid, increases reactive oxygen species production and induces genotoxicity in rat peripheral blood. Toxicol Ind Health, 31(5),433–41.2015;10.1177/0748233713475516 Search in Google Scholar

65. Al-Sabti, K.; Metcalfe, C.D. Fish micronuclei for assessing genotoxicity in water. Mutat. Res,343(2–3),121–135.1995;10.1016/0165-1218(95)90078-0 Search in Google Scholar

66. Kirsch-Volders, M.; Vanhauwaert, A.; De Boeck, M.; Decordier, I. Importance of detecting numerical versus structural chromosome aberrations. Mutat. Res,504(1–2),137–148.2002;10.1016/S0027-5107(02)00087-8 Search in Google Scholar

67. Kanellis, J.; Mudge,. SJ.; Fraser, S.; Katerelos, M.; Power, D.A. Redistribution of cytoplasmic VEGF to the basolateral aspect of renal tubular cells in ischemia-reperfusion injury. Kidney Int, 57, 2445–2456.2000;10.1046/j.1523-1755.2000.00103.x Search in Google Scholar

68. Kanellis, J.; Paizis, K.; Cox, A.J.; Stacker, S.A.; Gilbert, R.E.; Cooper, M,E,; Power, D.A. Renal ischemia-reperfusion increases endothelial VEGFR-2 without increasing VEGF or VEGFR-1 expression. Kidney Int, 61, 1696–1706.2002;10.1046/j.1523-1755.2002.00329.x Search in Google Scholar

69. Aboutaleb, N.; Jamali, H.; Abolhasani, M.; Pazoki,H.; Toroudi, H. Lavender oil (Lavandula angustifolia) attenuates renal ischemia/reperfusion injury in rats through suppression of inflammation, oxidative stress and apoptosis. Biomed Pharmacother, 110,9-19. 2019;10.1016/j.biopha.2018.11.045 Search in Google Scholar

70. Tögel, F.; Weiss, K.; Yang, Y.; Hu, Z.; Zhang, P.; Westenfelder, C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol-Ren Physiol, 292, F1626–1635.2007;10.1152/ajprenal.00339.2006 Search in Google Scholar

71. Kang, D.H.; Hughes, J.; Mazzali, M.; Schreiner, G.F.; Johnson, R.J. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol JASN, 12, 1448–1457.2001;10.1681/ASN.V1271448 Search in Google Scholar

72. Kang, D.H.; Joly, A.H.; Oh, S.W.; Hugo, C.; Kerjaschki, D.; Gordon, K.L.; Mazzal, M.; Jefferson, J.A.; Hughes, J.; Madsen, K.M.; Schreiner, G.F.; Johnson, R.J. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol JASN, 12, 1434–1447.2001;10.1681/ASN.V1271434 Search in Google Scholar

73. Hyder, S.M.; Nawaz, Z.; Chiappetta, C.; Stancel, G.M. Identification of functional estrogen response elements in the gene coding for the potent angiogenic factor vascular endothelial growth factor. Cancer Res, 60, 3183–3190.2000; Search in Google Scholar

74. Aitken, A.E.; Richardson, T,A.; Morgan, E,T. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol, 46, 123–149.2006;10.1146/annurev.pharmtox.46.120604.141059 Search in Google Scholar

75. Morgan, E.T. Regulation of cytochrome p450 by inflammatory mediators: why and how? Drug Metab Dispos Biol Fate Chem, 29, 207–212.2001;10.1016/S0300-483X(02)00283-4 Search in Google Scholar

76. Morgan, E.T.; Li-Masters, T.; Cheng, P.Y. Mechanisms of cytochrome P450 regulation by inflammatory mediators. Toxicology, 181–182, 207–210.2002;10.1016/S0300-483X(02)00283-4 Search in Google Scholar

77. Luedde, T.; Schwabe, R.F. NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol,8(2),108–118. 2011;10.1038/nrgastro.2010.213329553921293511 Search in Google Scholar