[
Bates, D., Mächler, M., Bolker, B. & Walker, S. 2015. Fitting linear mixed-effects models using lme4. – Journal of Statistical Software 67: 1–48. DOI: 10.18637/jss.v067.i01
]Search in Google Scholar
[
Beruldsen, G. 2003. Australian Birds Their Nests and Eggs. – G. & E. Beruldsen, Brisbane, Australia
]Search in Google Scholar
[
Biddle, L. E., Broughton, R. E., Goodman, A. M. & Deeming, D. C. 2018a. Composition of bird nests is a species-specific characteristic. – Avian Biology Research 11(2): 132–153. DOI: 10.3184/175815618X152 22318755467
]Search in Google Scholar
[
Biddle L. E., Deeming D. C. & Goodman A. M. 2018b. Birds use structural properties when selecting materials for different parts of their nests. – Journal of Ornithology 159(4): 999–1008. DOI: 10.1007/s10336-018-1571-y
]Search in Google Scholar
[
Biddle, L. E., Dickinson, A. M., Broughton, R. E., Gray, L. A., Bennett, S. L., Goodman, A. M. & Deeming, D. C. 2019. Construction materials affect the hydrological properties of bird nests. – Journal of Zoology 309(3): 161–171. DOI: 10.1111/jzo.12713
]Search in Google Scholar
[
Biddle, L. E., Goodman, A. M. & Deeming, D. C. 2017. Patterns of construction of birds’ nests provide insight into nest-building behaviours. – PeerJ 5: e3010. DOI: 10.7717/peerj.3010
]Search in Google Scholar
[
Boulton, R. L. & Cassey, P. 2012. How avian incubation behaviour influences egg surface temperatures: relationships with egg position, development and clutch size. – Journal of Avian Biology 43(4): 289–296. DOI: 10.1111/j.1600-048X.2012.05657.x
]Search in Google Scholar
[
Briggs, K. B. & Deeming, D. C. 2016. Use of materials in nest construction by Pied Flycatchers Ficedula hypoleuca reflects localised habitat and geographical location. – Bird Study 63(4): 516–524. DOI: 10.1080/00063657.2016.1238867
]Search in Google Scholar
[
Briggs, K. B. & Deeming, D. C. 2021. Localised habitat affects size and materials used in the construction of Common Redstart (Phoenicurus phoenicurus) nests. – Bird Study 68(1): 9–20. DOI: 10.1080/00063657.2021.1958197
]Search in Google Scholar
[
Briggs, K. B. & Deeming, D. C. 2022. Effects of time and box size on construction of Eurasian Nuthatch (Sitta europaea) nests. – Ardea 110(1): 61–74. DOI: 10.5253/arde.v110i1.a#5
]Search in Google Scholar
[
Briggs, K. B., Deeming, D. C. & Mainwaring, M. C. 2023. Plastic is a widely used and selectively chosen nesting material for Pied Flycatchers (Ficedula hypoleuca) in rural woodland habitats. – Science of the Total Environment 854: 158660. DOI: 10.1016/j.scitotenv.2022.158660
]Search in Google Scholar
[
Britt, J. & Deeming, D. C. 2011. First egg date and air temperature affect nest construction in Blue Tits Cyanistes caeruleus but not in Great Tits Parus major. – Bird Study 58(1): 78–89. DOI: 10.1080/00063657.2010.524916
]Search in Google Scholar
[
Broughton, R. K. & Parry W. 2020. Long-tailed Tit Aegithalos caudatus nest constructed from plastic fibres supports the theory of concealment by light reflectance. – Ringing & Migration 34(2): 120–123. DOI: 10.1080/03078698.2019.1830518
]Search in Google Scholar
[
Crossman, C. A., Rohwer, V. G. & Martin, P. R. 2011. Variation in the structure of bird nests between northern Manitoba and southeastern Ontario. – PLoS ONE 6: e19086. DOI: 10.1371/journal.pone.0019086
]Search in Google Scholar
[
Deeming, D. C. 2016. How does the bird-nest incubation unit work? – Avian Biology Research 9(2): 103–113. DOI: 10.3184/175815516X14567543242701
]Search in Google Scholar
[
Deeming, D. C. 2023. A review of the roles materials play in determining functional properties of bird nests. – Acta Ornithologica 58(2): 1–28. DOI: 10.3161/00016454AO2023.58.1.001
]Search in Google Scholar
[
Deeming, D. C. & Biddle, L. E. 2015. Thermal properties of bird nests depend on air-gaps between the materials. – Acta Ornithologica 50(1): 121–125. DOI: 10.3161/00016454AO2015.50.1.011
]Search in Google Scholar
[
Deeming, D. C. & Campion, E. 2018. Simulated rainfall reduces the insulative properties of bird nests. – Acta Ornithologica 53(1): 91–97. DOI: 10.3161/00016454AO2018.53.1.009
]Search in Google Scholar
[
Deeming, D. C., Dickinson, A. M., Broughton, R. E., Locke, E., Gray, L. A., Bennett, S., Gilchrist, R., Muniz, S., Goodman, A. M. & Biddle L. E. 2020a. Factors affecting thermal insulation of songbird nests as measured using temperature loggers. – Physiological and Biochemical Zoology 93(6): 488–504. DOI: 10.1086/711959
]Search in Google Scholar
[
Deeming, D. C., Gilchrist, R., Szafraniec, M. & Pollins, J. M. 2020b. Water vapour conductance of passerine nest walls. – Acta Ornithologica 55(1): 13–21. DOI: 10.3161/00016454AO2020.55.1.002
]Search in Google Scholar
[
Deeming, D. C. & Gray, L. A. 2016. Comparison of two methods for determination of the insulation of passerine nest walls. – Avian Biology Research 9(1): 28–31. DOI: 10.3184/175815516X14490629317636
]Search in Google Scholar
[
Deeming, D. C., Griffiths, J. D. & Biddle, L. E. 2020c. Material type and position determine the insulative properties of simulated nest walls. – Ardeola 67(1): 127–136. DOI: 10.13157/arla.67.1.2020.sc7
]Search in Google Scholar
[
Deeming, D. C. & Humphreys, E. 2020. Insulation of Common Chaffinch Fringilla coelebs nests is largely driven by animal-derived materials in the cup lining. – Acta Ornithologica 55(2): 253–260. DOI: 10.3161/00016454AO2020.55.2.010
]Search in Google Scholar
[
Dickinson, A. M., Locke, E., Gray, L. A., Bennett, S. L., Biddle, L. E., Goodman, A. M. & Deeming, D. C. 2022. Composition of nests constructed by species in the Motacillidae, Sylviidae and Prunellidae. – Avian Biology Research 15(1): 21–33. DOI: 10.1177/17581559211066083
]Search in Google Scholar
[
Duursma, D. E., Gallagher, R. V., Price, J. J. & Griffiths, S. C. 2018. Variation in avian egg shape and nest structure is explained by climatic conditions. – Scientific Reports 8(1): 4141. DOI: 10.1038/s41598-018-22436-0
]Search in Google Scholar
[
Ferguson-Lees, J., Castell, R. & Leech, D. 2011. A Field Guide to Monitoring Nests. – British Trust for Ornithology, Thetford, UK.
]Search in Google Scholar
[
Gray, L. A. & Deeming, D. C. 2017. Effect of air movement on the thermal insulation of avian nests. – Bird Study 64(4): 494–501. DOI: 10.1080/00063657.2017.1387518
]Search in Google Scholar
[
Griffith, S. C., Mainwaring, M. C., Sorato, E. & Beckmann, C. 2016. High atmospheric temperatures and ‘ambient incubation’ drive embryonic development and lead to earlier hatching in a passerine bird. – Royal Society Open Science 3(2): 150371. DOI: 10.1098/rsos.150371
]Search in Google Scholar
[
Hall, Z. J., Street, S. E., Auty, S. & Healy, S. D. 2015. The coevolution of building nests on the ground and domed nests in Timaliidae. – Auk 132(3): 584–593. DOI: 10.1642/AUK-15-23.1
]Search in Google Scholar
[
Hansell, M. 2000. Bird Nests and Construction Behaviour. – Cambridge University Press, Cambridge, UK.
]Search in Google Scholar
[
Hilton, G. M., Hansell, M. H., Ruxton, G. D., Reid, J. M. & Monaghan, P. 2004. Using artificial nests to test importance of nesting material and nest shelter for incubation energetics. – Auk 121(3): 777–787. DOI: 10.1093/auk/121.3.777
]Search in Google Scholar
[
Humphries, S., Elphick, C. S., Gjerdrum, C. & Rubega, M. 2007. Testing the function of the domed nests of Saltmarsh Sharp-tailed Sparrows. – Journal of Field Ornithology 78(2): 152–158. DOI: 10.1111/j.1557-9263.2007.00098.x
]Search in Google Scholar
[
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. 2017. lmerTest package: tests in linear mixed effects models. – Journal of Statistical Software 82(13): 1–26. DOI: 10.18637/jss.v082.i13
]Search in Google Scholar
[
Liu, Y., Chen, X. & Xin, J. H. 2008. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment. – Bioinspiration & Biomimetics 3(4): 046007. DOI: 10.1088/1748-3182/3/4/046007
]Search in Google Scholar
[
Mainwaring, M. C., Hartley, I. R., Bearhop, S., Brulez, K., du Feu, C. R., Murphy, G., Plummer, K., Webber, S. L., Reynolds, S. J. & Deeming, D. C. 2012. Latitudinal variation in blue tit and great tit nest characteristics indicates environmental adaptation. – Journal of Biogeography 39(9): 1669–1677. DOI: 10.1111/j.1365-2699.2012.02724.x
]Search in Google Scholar
[
Mainwaring, M. C., Deeming, D. C., Jones, C. I. & Hartley, I. R. 2014. Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics. – Ecology and Evolution 4(6): 841–851. DOI: 10.1002/ece3.952
]Search in Google Scholar
[
Martin, T. E., Boyce, A. J., Fierro-Calderón, K., Mitchell, A. E., Armstad, C. E., Mouton, J. C. & Bin Soudi, E. E. 2017. Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. – Functional Ecology 31(6): 1231–1240. DOI: 10.1111/1365-2435.12819
]Search in Google Scholar
[
McFarland, C., Monjello, M. & Moskowitz, D. 2021. Peterson Field Guide to North American Bird Nests. – Houghton Mifflin Harcourt, Boston
]Search in Google Scholar
[
McGowan, A., Sharp, S. P. & Hatchwell, B. J. 2004. The structure and function of nests of Long-tailed Tits Aegithalos caudatus. – Functional Ecology 18(4): 578–583. DOI: 10.1111/j.0269-8463.2004.00883.x
]Search in Google Scholar
[
Medina, I., Perez, D. M., Afonso Silva, A. C., Cally, J., León, C., Maliet, O. & Quintero, I. 2022. Nest architecture is linked with ecological success in songbirds. – Ecology Letters 25(6): 1365–1375. DOI: 10.1111/ele.13998
]Search in Google Scholar
[
Price, J. J. & Griffith, S. C. 2017. Open cup nests evolved from roofed nests in the early passerines. – Proceedings of Royal Society B 284: 20162708. DOI: 10.1098/rspb.2016.2708
]Search in Google Scholar
[
R Development Core Team 2023. R: A Language and Environment for Statistical Computing. – R Foundation for Statistical Computing, Vienna, Austria
]Search in Google Scholar
[
Street, S. E., Jaques, R. & De Silva, T. N. 2022. Convergent evolution of elaborate nests as structural defences in birds. – Proceedings of the Royal Society B 289(1989): 20221734. DOI: 10.1098/rspb.2022.1734
]Search in Google Scholar