1. bookVolume 53 (2020): Issue 2 (May 2020)
Journal Details
License
Format
Journal
eISSN
1581-1832
First Published
17 Oct 2008
Publication timeframe
4 times per year
Languages
English
Open Access

Fraud Prevention in the Leasing Industry Using the Kohonen Self-Organising Maps

Published Online: 08 Jun 2020
Volume & Issue: Volume 53 (2020) - Issue 2 (May 2020)
Page range: 128 - 145
Received: 11 Jul 2019
Accepted: 08 Apr 2020
Journal Details
License
Format
Journal
eISSN
1581-1832
First Published
17 Oct 2008
Publication timeframe
4 times per year
Languages
English

Abbas, O.A. (2008). Comparison between Data Clustering Algorithms. The International Arab Journal of Information Technology, 5(3), 320-325.Search in Google Scholar

Alavi, M., & Leidner, D.E. (2001). Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly, 25(1), 107-136. http://doi.org/10.2307/325096110.2307/3250961Search in Google Scholar

Almendra, V. D., & Enachescu, D. (2013). Using Self-Organizing Maps for Fraud Prediction at Online Auction Sites. 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 281-288. http://doi.org/10.1109/synasc.2013.4410.1109/SYNASC.2013.44Search in Google Scholar

Bação, F., Lobo, V., & Painho, M. (2005). Self-organizing Maps as Substitutes for K-Means Clustering. Lecture Notes in Computer Science Computational Science – ICCS 2005, 3516, 476-483. http://doi.org/10.1007/11428862_6510.1007/11428862_65Search in Google Scholar

Balasupramanian, N., Ephrem, B. G., & Al-Barwani, I. S. (2017). User pattern based online fraud detection and prevention using big data analytics and self organizing maps. 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 691-694. http://doi.org/10.1109/icicict1.2017.834264710.1109/ICICICT1.2017.8342647Search in Google Scholar

Bănărescu, A. (2015). Detecting and Preventing Fraud with Data Analytics. Procedia Economics and Finance, 32, 1827-1836. http://doi.org/10.1016/S2212-5671(15)01485-910.1016/S2212-5671(15)01485-9Search in Google Scholar

Basel Committee on Banking Supervision. (2002). Operational Risk Data Collection Exercise. Retrieved March 28, 2019, from http://www.bis.org/bcbs/qis/oprdata.pdfSearch in Google Scholar

Boobyer, C. (2003). Leasing and Asset Finance: The Comprehensive Guide for Practitioners. London: Euromoney Books.Search in Google Scholar

Brockett, P. L., Xia, X., & Derrig, R. A. (1998). Using Kohonen’s self-organizing feature map to uncover automobile bodily injury claims fraud. Journal of Risk and Insurance, 65(2), 245-274.10.2307/253535Search in Google Scholar

Caldeira, A. M., Gassenferth, W., Machado, M. A., & Santos, D. J. (2015). Auditing Vehicles Claims Using Neural Networks. Procedia Computer Science, 55, 62-71. http://doi.org/10.1016/j.procs.2015.07.00810.1016/j.procs.2015.07.008Search in Google Scholar

Carcillo, F., Le Borgne, Y.-A., Caelen, O., Kessaci, Y., Oblé, F., & Bontempi, G. (2019). Combining unsupervised and supervised learning in credit card fraud detection. Information Sciences, In Press.http://doi.org/10.1016/j.ins.2019.05.04210.1016/j.ins.2019.05.042Search in Google Scholar

Carneiro, N., Figueira, G., & Costa, M. (2017). A data mining based system for credit-card fraud detection in e-tail. Decision Support Systems, 95, 91-101. http://doi.org/10.1016/j.dss.2017.01.00210.1016/j.dss.2017.01.002Search in Google Scholar

Chen, Y.-KJ., Liou, W.-C., Chen, Y.-M., & Wu, J.-H. (2019). Fraud detection for financial statements of business groups. International Journal of Accounting Information Systems, 32, 1-23., ISSN 1467-0895, https://doi.org/10.1016/j.accinf.2018.11.004.10.1016/j.accinf.2018.11.004Search in Google Scholar

Chouiekh, A., & Haj, E. H. (2018). ConvNets for Fraud Detection analysis. Procedia Computer Science, 127, 133-138. http://doi.org/10.1016/j.procs.2018.01.10710.1016/j.procs.2018.01.107Search in Google Scholar

Dorronsoro, J., Ginel, F., Sánchez, C., & Cruz, C. (1997). Neural fraud detection in credit card operations. IEEE Transactions on Neural Networks, 8(4), 827-834. http://doi.org/10.1109/72.59587910.1109/72.595879Search in Google Scholar

Eshghi, A., & Kargari, M. (2019). Introducing a new method for the fusion of fraud evidence in banking transactions with regards to uncertainty. Expert Systems with Applications, 121, 382–392. http://doi.org/10.1016/j.eswa.2018.11.03910.1016/j.eswa.2018.11.039Search in Google Scholar

European Commission. (2011). EU Accounting Rule 8 Leases. Retrieved April 5, 2019, from https://ec.europa.eu/info/sites/info/files/about_the_european_commission/eu_budget/eu-accounting-rule-8-leases_2011_en.pdfSearch in Google Scholar

Fiore, U., Santis, A. D., Perla, F., Zanetti, P., & Palmieri, F. (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479, 448–455. http://doi.org/10.1016/j.ins.2017.12.03010.1016/j.ins.2017.12.030Search in Google Scholar

Flath, D. (1980). The economics of short-term leasing. Economic inquiry, 18(2), 247-259.10.1111/j.1465-7295.1980.tb00573.xSearch in Google Scholar

Folorunso, O., & Ogunde, A. (2005). Data mining as a technique for knowledge management in business process redesign. Information Management & Computer Security, 13(4), 274-280. http://doi.org/10.1108/0968522051061440710.1108/09685220510614407Search in Google Scholar

Hainaut, D. (2019). A self-organizing predictive map for non-life insurance. European Actuarial Journal, 9(1), 173-207.10.1007/s13385-018-0189-zSearch in Google Scholar

Holmbom, A. H., Eklund, T., & Back, B. (2011). Customer portfolio analysis using the SOM. International Journal of Business Information Systems, 8(4), 396-412. http://doi.org/10.1504/ijbis.2011.04239710.1504/IJBIS.2011.042397Search in Google Scholar

Horvat, I., Pejić Bach, M., & Merkač Skok, M. (2014). Decision tree approach to discovering fraud in leasing agreements. Business Systems Research Journal, 5(2), 61-71. http://doi.org/10.2478/bsrj-2014-001010.2478/bsrj-2014-0010Search in Google Scholar

Jian, L., Ruicheng, Y., & Rongrong, G. (2016). Self-organizing map method for fraudulent financial data detection. In 2016 3rd International Conference on Information Science and Control Engineering (ICISCE) (pp. 607-610). http://doi.org/10.1109/ICISCE.2016.13510.1109/ICISCE.2016.135Search in Google Scholar

Leite, R. A., Gschwandtner, T., Miksch, S., Gstrein, E., & Kuntner, J. (2018). Visual analytics for event detection: Focusing on fraud. Visual Informatics, 2(4), 198-212. http://doi.org/10.1016/j.visinf.2018.11.00110.1016/j.visinf.2018.11.001Search in Google Scholar

Lucas, Y., Portier, P.-E., Laporte, L., He-Guelton, L., Caelen, O., Granitzer, M., & Calabretto, S. (2020). Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs. Future Generation Computer Systems, 102, 393–402. http://doi.org/10.1016/j.future.2019.08.029 202010.1016/j.future.2019.08.029Search in Google Scholar

Merkevicius, E., Garšva, G., & Simutis, R. (2004). Forecasting of credit classes with the self-organizing maps. Information Technology and Control, 33(4), 61-66. Retrieved March 25, 2019, from http://itc.ktu.lt/index.php/ITC/article/view/11956Search in Google Scholar

Moradi, M., Salehi, M., Ghorgani, M. E., & Yazdi, H. S. (2013). Financial distress prediction of Iranian companies using data mining techniques. Organizacija, 46(1), 20-27. http://dx.doi.org/10.2478/orga-2013-000310.2478/orga-2013-0003Search in Google Scholar

Nami, S., & Shajari, M. (2018). Cost-sensitive payment card fraud detection based on dynamic random forest and k -nearest neighbors. Expert Systems with Applications, 110, 381-392. http://doi.org/10.1016/j.eswa.2018.06.01110.1016/j.eswa.2018.06.011Search in Google Scholar

Ngai, E., Hu, Y., Wong, Y., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559-569. http://dx.doi.org/10.1016/j.dss.2010.08.00610.1016/j.dss.2010.08.006Search in Google Scholar

Nian, K., Zhang, H., Tayal, A., Coleman, T., & Li, Y. (2016). Auto insurance fraud detection using unsupervised spectral ranking for anomaly. The Journal of Finance and Data Science, 2(1), 58-75. http://doi.org/10.1016/j.jfds.2016.03.00110.1016/j.jfds.2016.03.001Search in Google Scholar

Olszewski, D. (2014). Fraud detection using self-organizing map visualizing the user profiles. Knowledge-Based Systems, 70, 324-334. http://doi.org/10.1016/j.knosys.2014.07.00810.1016/j.knosys.2014.07.008Search in Google Scholar

Osei-Bryson, K. M. (2010). Towards supporting expert evaluation of clustering results using a data mining process model. Information Sciences, 180(3), 414-431.10.1016/j.ins.2009.09.019Search in Google Scholar

Patel, R., & Singh, D. (2013). Credit Card Fraud Detection & Prevention of Fraud Using Genetic Algorithm. International Journal of Soft Computing, 6. Retrieved March 25, 2019, from http://www.ijsce.org/attachments/File/v2i6/F1189112612.pdfSearch in Google Scholar

Patil, S., Nemade, V., & Soni, P. K. (2018). Predictive Modelling For Credit Card Fraud Detection Using Data Analytics. Procedia Computer Science, 132, 385-395. http://doi.org/10.1016/j.procs.2018.05.19910.1016/j.procs.2018.05.199Search in Google Scholar

Pejić Bach, M., Juković, S., Dumičić, K., & Šarlija, N. (2014). Business Client Segmentation in Banking Using Self-Organizing Maps. South East European Journal of Economics and Business, 8(2), 32-41. http://doi.org/10.2478/jeb-2013-000710.2478/jeb-2013-0007Search in Google Scholar

Pejić Bach, M., Vlahović, N, & Pivar, J. (2018). Self-organizing maps for fraud profiling in leasing. 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, 2018, 1203-1208. http://doi.org/10.23919/MIPRO.2018.840021810.23919/MIPRO.2018.8400218Search in Google Scholar

Quah, J. T., & Sriganesh, M. (2008). Real-time credit card fraud detection using computational intelligence. Expert Systems with Applications, 35(4), 1721-1732. http://doi.org/10.1016/j.eswa.2007.08.09310.1016/j.eswa.2007.08.093Search in Google Scholar

Rousseeuw, P., Perrotta, D., Riani, M., & Hubert, M. (2019). Robust Monitoring of Time Series with Application to Fraud Detection. Econometrics and Statistics, 9, 108-121. http://doi.org/10.1016/j.ecosta.2018.05.00110.1016/j.ecosta.2018.05.001Search in Google Scholar

Ryman-Tubb, N. F., Krause, P., & Garn, W. (2018). How Artificial Intelligence and machine learning research impacts payment card fraud detection: A survey and industry benchmark. Engineering Applications of Artificial Intelligence, 76, 130-157. http://doi.org/10.1016/j.engappai.2018.07.00810.1016/j.engappai.2018.07.008Search in Google Scholar

Sadgali, I., Sael, N., & Benabbou, F. (2019). Performance of machine learning techniques in the detection of financial frauds. Procedia Computer Science, 148, 45-54. http://doi.org/10.1016/j.procs.2019.01.00710.1016/j.procs.2019.01.007Search in Google Scholar

Singleton, T. W., & Singleton, A. J. (2007). Why don’t we detect more fraud? Journal of Corporate Accounting & Finance, 18(4), 7-10.10.1002/jcaf.20302Search in Google Scholar

Šubelj, L., Furlan, Š, & Bajec, M. (2011). An expert system for detecting automobile insurance fraud using social network analysis. Expert Systems with Applications, 38(1), 1039-1052. http://doi.org/10.1016/j.eswa.2010.07.14310.1016/j.eswa.2010.07.143Search in Google Scholar

Subudhi, S., & Panigrahi, S. (2017). Use of optimized Fuzzy C-Means clustering and supervised classifiers for automobile insurance fraud detection. Journal of King Saud University - Computer and Information Sciences, In press. http://doi.org/10.1016/j.jksuci.2017.09.01010.1016/j.jksuci.2017.09.010Search in Google Scholar

Tu, B., He, D., Shang, Y., Zhou, C., & Li, W. (2019). Deep feature representation for anti-fraud system. Journal of Visual Communication and Image Representation, 59, 253–256. http://doi.org/10.1016/j.jvcir.2019.01.03110.1016/j.jvcir.2019.01.031Search in Google Scholar

Uribe, C., & Isaza, C. (2012). Expert knowledge-guided feature selection for data-based industrial process monitoring. Revista Facultad De Ingeniería Universidad De Antioquia, 65, 112-125. Retrieved March 25, 2019, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-62302012000400009Search in Google Scholar

Urueña López, A., Mateo, F., Navío-Marco, J., Martínez-Martínez, J. M., Gómez-Sanchís, J., Vila-Francés, J., & Serrano-López, A. J. (2019). Analysis of computer user behavior, security incidents and fraud using Self-Organizing Maps. Computers & Security, 83, 38-51. http://doi.org/10.1016/j.cose.2019.01.00910.1016/j.cose.2019.01.009Search in Google Scholar

Van Hulle, M.M. (2012). Self-organizing Maps. In Rozenberg G., Bäck T., & Kok J.N. (Eds.) Handbook of Natural Computing. Berlin: Springer, Heidelberg.Search in Google Scholar

Van Laerhoven K. (2001) Combining the Self-Organizing Map and K-Means Clustering for On-Line Classification of Sensor Data. In: Dorffner G., Bischof H., Hornik K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, 2130, 464–469, Springer, Berlin, Heidelberg.10.1007/3-540-44668-0_65Search in Google Scholar

Viaene, S., Dedene, G., & Derrig, R. (2005). Auto claim fraud detection using Bayesian learning neural networks. Expert Systems with Applications, 29(3), 653-666. http://doi.org/10.1016/j.eswa.2005.04.03010.1016/j.eswa.2005.04.030Search in Google Scholar

Viscovery. (2019). The Ward cluster algorithm of Viscovery SOMine. Retrieved April 5, 2019, from https://www.viscovery.net/download/public/The-SOM-Ward-cluster-algorithm.pdfSearch in Google Scholar

Wang, D., Cheng, B. & Chen, J. (2019). Credit card fraud detection strategies with consumer incentives. Omega, 88, 179-195. http://doi.org/10.1016/j.omega.2018.07.00110.1016/j.omega.2018.07.001Search in Google Scholar

Wang, H., & Wang, S. (2008). A knowledge management approach to data mining process for business intelligence. Industrial Management & Data Systems, 108(5), 622-634.10.1108/02635570810876750Search in Google Scholar

Wang, Q., Xu, W., Huang, X., & Yang, K. (2019). Enhancing intraday stock price manipulation detection by leveraging recurrent neural networks with ensemble learning. Neurocomputing, 347, 46–58. http://doi.org/10.1016/j.neucom.2019.03.00610.1016/j.neucom.2019.03.006Search in Google Scholar

Wang, Y., & Xu, W. (2018). Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decision Support Systems, 105, 87–95. http://doi.org/10.1016/j.dss.2017.11.00110.1016/j.dss.2017.11.001Search in Google Scholar

Wehrens, R., & Buydens, L. (2007). Self- and Super-organizing Maps in R: The kohonen Package. Journal of Statistical Software, 21(5). Retrieved March 25, 2019, from https://www.jstatsoft.org/article/view/v021i05Search in Google Scholar

West, J., & Bhattacharya, M. (2016). Some Experimental Issues in Financial Fraud Mining. Procedia Computer Science, 80, 1734-1744. http://doi.org/10.1016/j.procs.2016.05.51510.1016/j.procs.2016.05.515Search in Google Scholar

Yan, C., Li, M., Liu, W., & Qi, M. (2020). Improved adaptive genetic algorithm for the vehicle Insurance Fraud Identification Model based on a BP Neural Network. Theoretical Computer Science, 817, 12–23. http://doi.org/10.1016/j.tcs.2019.06.02510.1016/j.tcs.2019.06.025Search in Google Scholar

Yan, C., Li, Y., Liu, W., Li, M., Chen, J., & Wang, L. (2019). An artificial bee colony-based kernel ridge regression for automobile insurance fraud identification. In press: Neurocomputing. http://doi.org/10.1016/j.neucom.2017.12.07210.1016/j.neucom.2017.12.072Search in Google Scholar

Zakaryazad, A., & Duman, E. (2016). A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing. Neurocomputing, 175, 121-131. http://doi.org/10.1016/j.neucom.2015.10.04210.1016/j.neucom.2015.10.042Search in Google Scholar

Zareapoor, M., & Shamsolmoali, P. (2015). Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier. Procedia Computer Science, 48, 679-685. http://doi.org/10.1016/j.procs.2015.04.20110.1016/j.procs.2015.04.201Search in Google Scholar

Zaslavsky, V., & Strizhak, A. (2006). Credit Card Fraud Detection Using Self-Organizing Maps. Information & Security: An International Journal, 18, 48-63. http://doi.org/10.11610/isij.180310.11610/isij.1803Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo