1. bookVolume 65 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Open Access

A technology of drinking water decontamination from radon and its decay products

Published Online: 29 May 2020
Volume & Issue: Volume 65 (2020) - Issue 2 (June 2020)
Page range: 67 - 70
Received: 19 Nov 2019
Accepted: 22 Jan 2020
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Underground water is one of the main sources of radon for households. This article focuses on the estimation and removal of radon from underground water using the technology and inorganic sorbents developed by EKSORB Ltd., Russia for liquid radioactive waste treatment in the nuclear power industry. The article presents the results of tests of a system for the removal of radon and radon daughters from water patented by EKSORB. This is achieved by filtering water through RATZIR sorbent, followed by periodic load regeneration. Over a period of three years, the plant is successful in removing radon from the water that had an initial radon content of approximately 1500 Bq/L to less than 60 Bq/L, without releasing radon to indoor/outdoor air.

Keywords

1. Magill, J., Pfenning, G., Dreher, R., & Soti, Z. (2012). Chart of the nuclides (KarlsruherNuclidkarte) (8th ed). Karlsruhe, Germany: Nucleonica GmbH.Search in Google Scholar

2. Podstawczyńska, A., & Pawlak, W. (2016). Soil heat flux and air temperature as factors of radon (Rn-222) concentration in the near-ground air layer. Nukleonika, 61(3), 231–237. DOI: 10.1515/nuka-2016-0039.10.1515/nuka-2016-0039Search in Google Scholar

3. Sóki, E., & Csige, I. (2016). Radon in the dry carbon dioxide spa of Mátraderecske, Hungary. Nukleonika, 61(3), 245–249. DOI: 10.1515/nuka-2016-0041.10.1515/nuka-2016-0041Search in Google Scholar

4. Seminsky, K., & Seminsky, A. (2016). Radon in underground waters of Baikal and Transbaikalia: spatial-temporal variations. Geodynamics & Tectonophysics, 7(3), 477–493. DOI: 10.5800/GT-2016-7-3-0218.10.5800/GT-2016-7-3-0218Search in Google Scholar

5. Wieprzowski, K., Bekas, M., Waśniewska, E., Wardziń-ski, A., & Magiera, A. (2018). Radon 222Rn in drinking water of West Pomeranian Voivodeship and Kuyavian-Pomeranian Voivodeship, Poland. Nukleonika, 63(2), 43–46. DOI: 10.2478/nuka-2018-0005.10.2478/nuka-2018-0005Search in Google Scholar

6. Alomari, A. H., Saleh, M. A., Hashim, S., Alsayaheen, A., & Abdeldin, I. (2019). Activity concentrations of 226Ra, 228Ra, 222Rn and their health impact in the groundwater of Jordan. J. Radioanal. Nucl. Chem., 322, 7–8. DOI: 10.1007/s10967-019-06686-410.1007/s10967-019-06686-4Search in Google Scholar

7. Singh, P., Singh, P., Sahoo, B. K., & Bajwa, B. S. (2016). A study on uranium and radon levels in drinking water sources of a mineralized zone of Himachal Pradesh, India. J. Radioanal. Nucl. Chem., 309, 541–549. DOI: 10.1007/s10967-015-4629-9.10.1007/s10967-015-4629-9Search in Google Scholar

8. Skeppstrom, K., & Olofsson, B. (2006). A prediction method for radon in groundwater using GIS and multivariate statistics. Sci. Total. Environ., 367, 666–680. DOI: 10.1016/j.scitotenv.2006.02.044.10.1016/j.scitotenv.2006.02.04416580708Search in Google Scholar

9. Lopes, I., Vesterbacka, P., & Kelleher, K. (2017). Comparison of radon (Rn-222) concentration in Portugal and Finland underground waters. J. Radioanal. Nucl. Chem., 311(3), 1867–1873. DOI: 10.1007/s10967-017-5166-5.10.1007/s10967-017-5166-5Search in Google Scholar

10. Semenishchev, V. S., Remez, V. P., & Voronina, A. V. (2018). Use of the Sorben-Tec system for rapid dosi-metric evaluation of 222Rn level in drinking water. J. Radioanal. Nucl. Chem., 325(3), 1311–1318. DOI: 10.1007/s10967-018-6038-3.10.1007/s10967-018-6038-3Search in Google Scholar

11. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.Search in Google Scholar

12. United States Environmental Protection Agency (1991). Radon Measurement Proficiency (RMP) Program Handbook. Washington, D.C.: Office of Radiation Programs. (EPA 520/1-91-006).Search in Google Scholar

13. European Union. (2013). Council Directive 2013/51/ Euratom of 22 October 2013. Laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. Official Journal of the European Union, 7.11.2013, L 296/12. Retrieved January 28, 2020, from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0051&rid=7.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo