1. bookVolume 64 (2019): Issue 1 (March 2019)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Radicals initiated by gamma rays in selected amino acids and collagen

Published Online: 02 Mar 2019
Volume & Issue: Volume 64 (2019) - Issue 1 (March 2019)
Page range: 11 - 17
Received: 12 Nov 2018
Accepted: 28 Dec 2018
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Calf skin collagen and three amino acids essential for its structure, namely glycine, L-proline and 4-hydroxyl-L-proline, were irradiated with gamma rays up to a dose of 10 kGy. Conversion of radicals over time or after thermal annealing to selected temperatures was monitored by X-band electron paramagnetic resonance (EPR) spectroscopy. Some experimental spectra were compared with signals simulated based on literature data from the electron nuclear double resonance (ENDOR) studies. The following phenomena were confirmed in the tested amino acids: abstraction of hydrogen atom (glycine, proline, hydroxyproline, collagen), deamination (glycine, hydroxyproline), decarboxylation (hydroxyproline). Chain scission at glycine residues, radiation-induced decomposition of side groups and oxidative degradation were observed in irradiated collagen. The decay of radicals in collagen saturated with water occurred at lower temperatures than in macromolecules having only structural water. The paramagnetic centres were the most stable in an oxygen-free atmosphere (vacuum). Radical processes deteriorated the structure of collagen; hence, radiation sterilization of skin grafts requires careful pros and cons analysis.

Keywords

1. Samsell, B. J., & Moore, M. A. (2012). Use of controlled low dose gamma irradiation to sterilize allograft tendons for ACL reconstruction: biomechanical and clinical perspective. Cell Tissue Bank., 13, 217–223. doi.org/10.1007/s10561-011-9251-7.10.1007/s10561-011-9251-7Open DOISearch in Google Scholar

2. Balsly, C. R., Cotter, A. T., Williams, L. A., Gaskins, B. D., Moore, M. A., & Wolfinbarger Jr., L. (2008). Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts. Cell Tissue Bank., 9, 289–298. doi.org/10.1007/s10561-008-9069-0.10.1007/s10561-008-9069-0Open DOISearch in Google Scholar

3. Greaves, L. L., Hecker, A. T., & Brown, C. H. (2008). The effect of donor age and low-dose gamma irradiation on the initial biomechanical properties of human tibialis tendon allografts. Am. J. Sports Med., 36, 1358–1366. doi.org/10.1177/0363546508314394.10.1177/0363546508314394Open DOISearch in Google Scholar

4. Singh, R., Singh, D., & Singh, A. (2016). Radiation sterilization of tissue allografts: A review. World J. Radiol., 8, 355–369. doi.org/10.4329/wjr.v8.i4.355.10.4329/wjr.v8.i4.355Search in Google Scholar

5. Leroy, M., Labbé, J. F., Ouellet, M., Jean, J., Lefèvre, T., Laroche, G., Auger, M., & Pouliot, R. (2014). A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy. Acta Biomater., 10, 2703–2711. doi.org/10.1016/j.actbio.2014.02.007.10.1016/j.actbio.2014.02.007Search in Google Scholar

6. Pietrucha, K. (2015). Physicochemical properties of 3D collagen-CS scaffolds for potential use in neural tissue engineering. Int. J. Biol. Macromol., 80, 732–739. doi.org/10.1016/j.ijbiomac.2015.07.005.10.1016/j.ijbiomac.2015.07.005Open DOISearch in Google Scholar

7. Madison, S. A., McCallum, J. E. B., & Rojas-Wahl, R. U. (2002). Hydroperoxide formation in model collagens and collagen type I. Int. J. Cosm. Sci., 24, 43–52. doi.org/10.1046/j.0412-5463.2001.00114.x.10.1046/j.0412-5463.2001.00114.xOpen DOISearch in Google Scholar

8. Davies, M. J. (2016). Protein oxidation and peroxidation. Biochem. J., 473, 805–825. doi.org/10.1042/BJ20151227N.10.1042/BJ20151227Search in Google Scholar

9. Szpak, P. (2011). Fish bone chemistry and ultra-structure: Implications for taphonomy and stable isotope analysis. J. Arch. Sci., 38(12), 3358–3372. doi: 10.1016/j.jas.2011.07.022.10.1016/j.jas.2011.07.022Open DOISearch in Google Scholar

10. Chipara, M., Reyes-Romero, J., Ignat, M., Constantinescu, B., & Secu, C. (2003). ESR studies on collagen irradiated with protons. Polym. Degrad. Stab., 80, 45–49. doi.org/10.1016/S0141-3910(02)00381-6.10.1016/S0141-3910(02)00381-6Search in Google Scholar

11. Bowes, J. H., & Moss, J. A. (1962). The effect of gamma radiation on collagen1. Radiat. Res., 16, 211–223. doi.org/10.2307/3571153.10.2307/3571153Open DOISearch in Google Scholar

12. Syrstad, E. A., & Tureček, F. J. (2005). Toward a general mechanism of electron capture dissociation. Am. Soc. Mass Spectr., 16, 208–224. doi.org/10.1016/j.jasms.2004.11.001.10.1016/j.jasms.2004.11.001Open DOISearch in Google Scholar

13. Symons, M. C. R. (1996). Radicals generated by bone cutting and fracture. Free Rad. Biol. Med., 20(6), 831–835.10.1016/0891-5849(95)02174-4Search in Google Scholar

14. Smith, G. J. (1995). New trends in photobiology. Photodegradation of keratin and other structural proteins. J. Photochem. Photobiol. B-Biol., 27, 187–198. doi.org/10.1016/1011-1344(94)07104-V.10.1016/1011-1344(94)07104-Open DOISearch in Google Scholar

15. Nomura, S., Hiltner, A., Lando, J. B., & Baer, E. (1977). Interaction of water with native collagen. Biopolym. J., 16, 231–246. doi.org/10.1002/bip.1977.360160202.10.1002/bip.1977.360160202831859Open DOISearch in Google Scholar

16. Gauza-Włodarczyk, M., Kubisz, L., & Włodarczyk, D. (2017). Amino acid composition in determination of collagen origin and assessment of physical factors effects. Int. J. Biol. Macromol., 104, 987–991. doi.org/10.1016/j.ijbiomac.2017.07.013.10.1016/j.ijbiomac.2017.07.01328687386Open DOISearch in Google Scholar

17. Dziedzic-Goclawska, A., Kaminski, A., Uhrynowska-Tyszkiewicz, I., & Stachowicz, W. (2005). Irradiation as a safety procedure in tissue banking. Cell Tissue Bank., 6, 201–219. doi.org/10.1007/s10561-005-0338-x.10.1007/s10561-005-0338-x16151960Open DOISearch in Google Scholar

18. Ciesielska, B., Schultka, K., Penkowski, M., & Sagstuen, E. (2004). EPR study of light illumination effects on radicals in gamma-irradiated L-alanine. Spectrochim. Acta Part A, 60, 1327–1333. doi: 10.1016/j.saa.2003.10.030.10.1016/j.saa.2003.10.03015134731Open DOISearch in Google Scholar

19. Ban, F., Gauld, J. W., & Boyd, R. J. (2000). Theoretical studies of the radiation products of hydroxyproline. J. Phys. Chem. A, 104, 8583–8592. doi.org/10.1021/jp001692g.10.1021/jp001692gOpen DOISearch in Google Scholar

20. Aboelezz, E., & Hassan, G. M. (2018). Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose. Radiat. Phys. Chem., 145, 5–10. doi.org/10.1016/j.radphyschem.2017.12.006.10.1016/j.radphyschem.2017.12.006Open DOISearch in Google Scholar

21. Sanderud, A., & Sagstuen, E. J. (1998). EPR and ENDOR studies of single crystals of α-glycine X-ray irradiated at 295 K. J. Phys. Chem. B, 102, 9353–9361. doi.org/10.1021/jp982932j.10.1021/jp982932jOpen DOISearch in Google Scholar

22. Aydin, M., & Osmanoglu, Y. E. (2011). EPR study of free radicals in amino acids derivatives by gamma rays. Rom. J. Phys., 56, 1156–1161. doi.org/10.1016/j.msec.2017.06.012.10.1016/j.msec.2017.06.01228866189Open DOISearch in Google Scholar

23. Kornacka, E. M., Przybytniak, G., & Zimek, Z. (2018). Radicals initiated by gamma-rays in collagen and its main components. Radiat. Phys. Chem., 142, 4–8.10.1016/j.radphyschem.2017.03.034Search in Google Scholar

24. Brustolon, M., Chis, V., & Maniero, A. L. (1997). New radical detected by HF-EPR, ENDOR, and pulsed EPR in a room temperature irradiated single crystal of glycine. J. Phys. Chem. A, 101, 4887–4892. doi.org/10.1021/jp970347x.10.1021/jp970347xOpen DOISearch in Google Scholar

25. Nelson, W. H. (1988). ESR and ENDOR studies of radicals produced in hydroxyproline single crystals by x-irradiation at low temperatures. J. Phys. Chem., 92, 554–561. doi.org/10.1021/j100313a060.10.1021/j100313a060Open DOISearch in Google Scholar

26. Nelson, W. H., & Nave, C. R. (1981). ESR and ENDOR studies of radicals produced in hydroxyproline single crystals by x irradiation at low temperature. J. Chem. Phys., 74, 2710–2716. doi.org/10.1063/1.441440.10.1063/1.441440Open DOISearch in Google Scholar

27. Matysik, J., Alia, Bhalu, B., & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci., 82, 525–532. www.jstor.org/stable/24105959.Search in Google Scholar

28. Rawadieh, S., Altarawneh, I., Alateyat, H. B., & Altarawneh, M. (2013). Theoretical study on the unimolecular decomposition of proline. Comput. Theor. Chem., 1018, 45–49. doi.org/10.1016/j.comptc.2013.05.034.10.1016/j.comptc.2013.05.034Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo