This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
EN 13791, Assessment of in-situ compressive strength in structures and precast concrete components. 2019.Search in Google Scholar
SFS 7508, “Assessment of in-situ compressive strength in structures and precast concrete components. Application of standard SFS-EN 13791 in Finland (in Finnish),” 2024, The Finnish Standards Association (SFS), Helsinki. Accessed: Apr. 20, 2025. [Online]. Available: https://online.sfs.fi/fi/index/tuotteet/SFS/SFS/ID2/7/1340068.html.stxSearch in Google Scholar
N. Kabashi, C. Kraniqi, and A. Dautaj, “Evaluation the Compressive Strength in Concrete Structures Using the In-Situ Test Methods,” Journal of Civil Engineering and Environmental Science, pp. 1–4, 2016, doi: 10.17352/2455-488X.000007.Search in Google Scholar
R. Sefrin and C. Glock, “Characteristic concrete compressive strength of existing structures—Evaluation of EN 13791:2019 for small sample sizes,” Structural Concrete, vol. 23, no. 2, pp. 822–835, Apr. 2022, doi: 10.1002/SUCO.202100207.Search in Google Scholar
EN 1992-1-1, “Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings,” 2004, The European Union Per Regulation 305/2011.Search in Google Scholar
C. A. Clear, “Estimation of compressive strength for structural assessment of an existing structure,” 2021, The Mineral Products Association (MPA).Search in Google Scholar
S. Ahmadiyan, D. Mehari, K. Skolan, F. Arkitektur, and O. Samhällsbyggnad, “Estimation of the characteristic in-situ compressive strength class of concrete structures: A case study of the Skuru bridge,” Stockholm, Sweden, 2021. Accessed: Jan. 14, 2022. [Online]. Available: https://www.diva-portal.org/smash/get/diva2:1563737/FULLTEXT01.pdfSearch in Google Scholar
EN 12504-1, “Testing concrete in structures Part 1: Cored specimens - Taking, examining and testing in compression,” 2009, The European Committee for Standardisation (CEN).Search in Google Scholar
BRMCA, “Assessment of in-situ concrete strength – revised BS EN 13791 and BS EN 12504-1,” British Ready-Mixed Concrete Association. [Online]. Available: https://www.brmca.org.uk/documents/Assessment_of_in-situ_concrete_strengthrevised_BS_EN_13791_and_BS_EN_12504-1_Concrete_April2020.pdfSearch in Google Scholar
J. K. Kim, C. Y. Kim, S. T. Yi, and Y. Lee, “Effect of carbonation on the rebound number and compressive strength of concrete,” Cem Concr Compos, vol. 31, no. 2, pp. 139–144, Feb. 2009, doi: 10.1016/J.CEMCONCOMP.2008.10.001.Search in Google Scholar
A. Wallenius, “Procedure of determining properties of hardened reinforced concrete from structures,” Aalto University School of Engineering, Espoo, 2022. Accessed: Aug. 27, 2022. [Online]. Available: https://aaltodoc.aalto.fi:443/handle/123456789/112661Search in Google Scholar
Procq, “The SilverSchmidt Reference Curve.” Accessed: Apr. 20, 2025. [Online]. Available: https://hammondconcrete.co.uk/wp-content/uploads/2020/06/The-SilverSchmidt-Reference-Curve.pdfSearch in Google Scholar
G. Karaiskos, A. Deraemaeker, D. G. Aggelis, and D. Van Hemelrijck, “Monitoring of concrete structures using the ultrasonic pulse velocity method,” Smart Mater Struct, vol. 24, no. 11, 2015, doi: 10.1088/0964-1726/24/11/113001.Search in Google Scholar
P. Burrascano, S. Callegari, A. Montisci, M. Ricci, and M. Versaci, Ultrasonic nondestructive evaluation systems: Industrial application issues. Springer International Publishing, 2015. doi: 10.1007/978-3-319-10566-6/COVER.Search in Google Scholar
Y. Lin, “Investigation of pulse velocity-strength relationship of hardened concrete,” ACI Mater J, vol. 104, no. 4, pp. 344–350, Jun. 2007, Accessed: Aug. 27, 2022. [Online]. Available: https://www.researchgate.net/publication/287762473_Investigation_of_pulse_velocity-strength_relationship_of_hardened_concreteSearch in Google Scholar
EN 12504-4, Testing concrete - Part 4: Determination of ultrasonic pulse velocity. The European Committee for Standardisation (CEN), 2004.Search in Google Scholar
F. Al-Neshawy, H. Ahmed, and J. Puttonen, “Defining concrete compressive strength by combining the results of different NDT methods,” Espoo, 2021. Accessed: Apr. 20, 2025. [Online]. Available: https://aaltodoc.aalto.fi/items/3e8e843b-4fd3-416b-930e-439fd2b07b68Search in Google Scholar
J. P. Balayssac and V. Garnier, Non-destructive Testing and Evaluation of Civil Engineering Structures. Elsevier Inc., 2017. doi: 10.1016/C2016-0-01227-5.Search in Google Scholar
EN12504-1, Testing concrete in structures. Part 1: Cored specimens. Taking, examining and testing in compression. 2019. Accessed: Dec. 16, 2023. [Online]. Available: https://sales.sfs.fi/fi/index/tuotteet/SFS/CEN/ID2/1/787649.html.stx#Search in Google Scholar
EN 12390-7:2019, “Testing hardened concrete. Part 7: Density of hardened concrete,” 2019, European committee for standardization. Accessed: Dec. 16, 2023. [Online]. Available: https://sales.sfs.fi/fi/index/tuotteet/SFS/CEN/ID2/1/787705.html.stx#Search in Google Scholar
R. Sefrin and C. Glock: “Characteristic concrete compressive strength of existing structures—Evaluation of EN 13791:2019 for small sample sizes,” Structural Concrete, vol. 23, no. 2, pp. 822–835, Apr. 2022, doi: 10.1002/SUCO.202100207.Search in Google Scholar