This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Dranchuk, P. M., Abou-Kassem, H. (1975). Calculation of Z factors for natural gases using equations of state. Journal of Canadian Petroleum Technology, 14 (03). https://doi.org/10.2118/75-03-03DranchukP. M.Abou-KassemH.1975Calculation of Z factors for natural gases using equations of stateJournal of Canadian Petroleum Technology1403https://doi.org/10.2118/75-03-03Search in Google Scholar
Ajorkaran, F., Sefidi, A. C. (2019). Application of RBF-ANN in prediction of natural gas density in different operational conditions. Petroleum Science and Technology, 37 (22). https://doi.org/10.1080/10916466.2018.1476888AjorkaranF.SefidiA. C.2019Application of RBF-ANN in prediction of natural gas density in different operational conditionsPetroleum Science and Technology3722https://doi.org/10.1080/10916466.2018.1476888Search in Google Scholar
Carotenuto, A., Giovinco, G., Viglietti, B., Vanoli, L. (2005). A new procedure for the determination of calibration curves for a gas chromatograph used in natural gas analysis. Chemometrics and Intelligent Laboratory Systems, 75 (2), 209–217. https://doi.org/10.1016/j.chemolab.2004.06.008CarotenutoA.GiovincoG.VigliettiB.VanoliL.2005A new procedure for the determination of calibration curves for a gas chromatograph used in natural gas analysisChemometrics and Intelligent Laboratory Systems752209217https://doi.org/10.1016/j.chemolab.2004.06.008Search in Google Scholar
Cimerman, F., Jarm, M., Širok, B., Blagojevič, B. (2016). Taking in account measuring errors of volume conversion devices in measuring of the volume of natural gas. Journal of Mechanical Engineering, 62 (2), 95–104. https://doi.org/10.5545/sv-jme.2015.2948CimermanF.JarmM.ŠirokB.BlagojevičB.2016Taking in account measuring errors of volume conversion devices in measuring of the volume of natural gasJournal of Mechanical Engineering62295104https://doi.org/10.5545/sv-jme.2015.2948Search in Google Scholar
Le Corre, O., Loubar, K. (2010). Natural gas: Physical properties and combustion features. In Natural Gas. IntechOpen. http://dx.doi.org/10.5772/9823Le CorreO.LoubarK.2010Natural gas: Physical properties and combustion featuresInNatural GasIntechOpenhttp://dx.doi.org/10.5772/9823Search in Google Scholar
Coull, C., Spearman, E., Laidlaw, J. (2009). Real life ultrasonic flowmeter verification for upstream custody transfer metering of natural gas. In XIX IMEKO World Congress: Fundamental and Applied Metrology. IMEKO, 1276–1281. ISBN 978-963-88410-0-1.CoullC.SpearmanE.LaidlawJ.2009Real life ultrasonic flowmeter verification for upstream custody transfer metering of natural gasInXIX IMEKO World Congress: Fundamental and Applied MetrologyIMEKO12761281ISBN 978-963-88410-0-1.Search in Google Scholar
Dell'Isola, M., Cannizzo, M., Diritti, M. (1997). Measurement of high-pressure natural gas flow using ultrasonic flowmeters. Measurement, 20 (2), 75–89. https://doi.org/10.1016/S0263-2241(97)00016-XDell'IsolaM.CannizzoM.DirittiM.1997Measurement of high-pressure natural gas flow using ultrasonic flowmetersMeasurement2027589https://doi.org/10.1016/S0263-2241(97)00016-XSearch in Google Scholar
Dong, J., Song, B., He, F., Xu, Y., Wang, Q., Li, W., Zhang, P. (2023). Research on a hybrid intelligent method for natural gas energy metering. Sensors, 23 (14), 6528. https://doi.org/10.3390/s23146528DongJ.SongB.HeF.XuY.WangQ.LiW.ZhangP.2023Research on a hybrid intelligent method for natural gas energy meteringSensors23146528https://doi.org/10.3390/s23146528Search in Google Scholar
Elsayed, M. A., Alsabaa, A., Salem, A. M. (2023). Different machine learning approaches to predict gas deviation factor (Z-factor). Journal of Petroleum and Mining Engineering, 25 (1), 88–96. https://doi.org/10.21608/jpme.2023.177642.1145ElsayedM. A.AlsabaaA.SalemA. M.2023Different machine learning approaches to predict gas deviation factor (Z-factor)Journal of Petroleum and Mining Engineering2518896https://doi.org/10.21608/jpme.2023.177642.1145Search in Google Scholar
Faramawy, S., Zaki, T., Sakr, A. A.-E. (2016). Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, 34, 34–54. https://doi.org/10.1016/j.jngse.2016.06.030FaramawyS.ZakiT.SakrA. A.-E.2016Natural gas origin, composition, and processing: A reviewJournal of Natural Gas Science and Engineering343454https://doi.org/10.1016/j.jngse.2016.06.030Search in Google Scholar
Farzaneh-Gord, M., Mohseni-Gharyehsafa, B., Ebrahimi-Moghadam, A., Jabari-Moghadam, A., Toikka, A., Zvereva, I. (2018). Precise calculation of natural gas sound speed using neural networks: An application in flow meter calibration. Flow Measurement and Instrumentation, 64, 90–103. https://doi.org/10.1016/j.flowmeasinst.2018.10.013Farzaneh-GordM.Mohseni-GharyehsafaB.Ebrahimi-MoghadamA.Jabari-MoghadamA.ToikkaA.ZverevaI.2018Precise calculation of natural gas sound speed using neural networks: An application in flow meter calibrationFlow Measurement and Instrumentation6490103https://doi.org/10.1016/j.flowmeasinst.2018.10.013Search in Google Scholar
Farzaneh-Gord, M., Rahbari, H. R., Mohseni-Gharesafa, B., Toikka, A., Zvereva, I. (2021). Accurate determination of natural gas compressibility factor by measuring temperature, pressure and Joule-Thomson coefficient: Artificial neural network approach. Journal of Petroleum Science and Engineering, 202, 108427. https://doi.org/10.1016/j.petrol.2021.108427Farzaneh-GordM.RahbariH. R.Mohseni-GharesafaB.ToikkaA.ZverevaI.2021Accurate determination of natural gas compressibility factor by measuring temperature, pressure and Joule-Thomson coefficient: Artificial neural network approachJournal of Petroleum Science and Engineering202108427https://doi.org/10.1016/j.petrol.2021.108427Search in Google Scholar
Ficco, G., Dell’Isola, M., Vigo, P., Celenza, L. (2015). Uncertainty analysis of energy measurements in natural gas transmission networks. Flow Measurement and Instrumentation, 42, 58–68. https://doi.org/10.1016/j.flowmeasinst.2015.01.006FiccoG.Dell’IsolaM.VigoP.CelenzaL.2015Uncertainty analysis of energy measurements in natural gas transmission networksFlow Measurement and Instrumentation425868https://doi.org/10.1016/j.flowmeasinst.2015.01.006Search in Google Scholar
Haloua, F., Ponsard, J.-N., Lartigue, G., Hay, B., Villermaux, C., Foulon, E., Zaréa, M. (2012). Thermal behaviour modelling of a reference calorimeter for natural gas. International Journal of Thermal Sciences, 55, 40–47. https://doi.org/10.1016/j.ijthermalsci.2011.12.014HalouaF.PonsardJ.-N.LartigueG.HayB.VillermauxC.FoulonE.ZaréaM.2012Thermal behaviour modelling of a reference calorimeter for natural gasInternational Journal of Thermal Sciences554047https://doi.org/10.1016/j.ijthermalsci.2011.12.014Search in Google Scholar
Heinig, D., Starke, E., Ullman, F., Wrath, A. (2022). Measuring hydrogen and hydrogen enriched natural gas flows with ultrasonic flow meters – experiences and perspectives. In Global Flow Measurement Workshop. Glasgow, Scotland: TÜV SÜD National Engineering Laboratory.HeinigD.StarkeE.UllmanF.WrathA.2022Measuring hydrogen and hydrogen enriched natural gas flows with ultrasonic flow meters – experiences and perspectivesInGlobal Flow Measurement WorkshopGlasgow, ScotlandTÜV SÜD National Engineering LaboratorySearch in Google Scholar
Bergervoet, J. T. M. (2003). Spin-Offs from the development of rotary gas meters. In 11th Conference on Flow Measurement. IMEKO, 472–486. ISBN 978-1-63439-896-1.BergervoetJ. T. M.2003Spin-Offs from the development of rotary gas metersIn11th Conference on Flow MeasurementIMEKO472486ISBN 978-1-63439-896-1.Search in Google Scholar
Kamyab, M., Sampaio Jr., J. H. B, Qanbari, F., Eustes III, A. W. (2010). Using artificial neural networks to estimate the z-factor for natural hydrocarbon gases. Journal of Petroleum Science and Engineering, 73 (3–4), 248–257. https://doi.org/10.1016/j.petrol.2010.07.006KamyabM.SampaioJ. H. BJr.QanbariF.EustesA. W.III2010Using artificial neural networks to estimate the z-factor for natural hydrocarbon gasesJournal of Petroleum Science and Engineering733–4248257https://doi.org/10.1016/j.petrol.2010.07.006Search in Google Scholar
Karpash, O., Darvay, I., Karpash, M. (2010). New approach to natural gas quality determination. Journal of Petroleum Science and Engineering, 71 (3–4), 133–137. https://doi.org/10.1016/j.petrol.2009.12.012KarpashO.DarvayI.KarpashM.2010New approach to natural gas quality determinationJournal of Petroleum Science and Engineering713–4133137https://doi.org/10.1016/j.petrol.2009.12.012Search in Google Scholar
Katz, D. L., Cornell, D., Vary, J. A., Kobayashi, R., Elenbass, J. R., Poehmann, F. H., Weinaug, C. F. (1959). Handbook of Natural Gas Engineering. McGraw-Hill, ISBN 978-0070333840.KatzD. L.CornellD.VaryJ. A.KobayashiR.ElenbassJ. R.PoehmannF. H.WeinaugC. F.1959Handbook of Natural Gas EngineeringMcGraw-HillISBN 978-0070333840.Search in Google Scholar
López-González, L. M., Sala, J. M., González-Bustamante, J. A., Míguez, J. L. (2006). Modelling and simulation of the dynamic performance of a natural-gas turbine flowmeter. Applied Energy, 83 (11), 1222–1234. https://doi.org/10.1016/j.apenergy.2005.12.002López-GonzálezL. M.SalaJ. M.González-BustamanteJ. A.MíguezJ. L.2006Modelling and simulation of the dynamic performance of a natural-gas turbine flowmeterApplied Energy831112221234https://doi.org/10.1016/j.apenergy.2005.12.002Search in Google Scholar
Salehuddin, N. F., Omar, M. B., Ibrahim, R., Bingi, K. (2022). A neural network-based model for predicting Saybolt color of petroleum products. Sensors, 22 (7), 2796. https://doi.org/10.3390/s22072796SalehuddinN. F.OmarM. B.IbrahimR.BingiK.2022A neural network-based model for predicting Saybolt color of petroleum productsSensors2272796https://doi.org/10.3390/s22072796Search in Google Scholar
Santhosh, K. V., Roy, B. K. (2012). An intelligent flow measurement technique using ultrasonic flow meter with optimized neural network. International Journal of Control and Automation, 5 (4), 185–196.SanthoshK. V.RoyB. K.2012An intelligent flow measurement technique using ultrasonic flow meter with optimized neural networkInternational Journal of Control and Automation54185196Search in Google Scholar
Shateri, M. H., Ghorbani, S., Hemmati-Sarapardeh, A., Mohammadi, A. H. (2015). Application of Wilcoxon generalized radial basis function network for prediction of natural gas compressibility factor. Journal of the Taiwan Institute of Chemical Engineers, 50, 131–141. https://doi.org/10.1016/j.jtice.2014.12.011ShateriM. H.GhorbaniS.Hemmati-SarapardehA.MohammadiA. H.2015Application of Wilcoxon generalized radial basis function network for prediction of natural gas compressibility factorJournal of the Taiwan Institute of Chemical Engineers50131141https://doi.org/10.1016/j.jtice.2014.12.011Search in Google Scholar
Su, L., Zhao, J., Wang, W. (2021). Hybrid physical and data driven transient modeling for natural gas networks. Journal of Natural Gas Science and Engineering, 95, 104146. https://doi.org/10.1016/j.jngse.2021.104146SuL.ZhaoJ.WangW.2021Hybrid physical and data driven transient modeling for natural gas networksJournal of Natural Gas Science and Engineering95104146https://doi.org/10.1016/j.jngse.2021.104146Search in Google Scholar
Su, M., Zhang, Z., Zhu, Y., Zha, D., Wen, W. (2019). Data driven natural gas spot price prediction models using machine learning methods. Energies, 12 (9), 1680. https://doi.org/10.3390/en12091680SuM.ZhangZ.ZhuY.ZhaD.WenW.2019Data driven natural gas spot price prediction models using machine learning methodsEnergies1291680https://doi.org/10.3390/en12091680Search in Google Scholar
Szoplik, J., Muchel, P. (2023). Using an artificial neural network model for natural gas compositions forecasting. Energy, 263 (D), 126001. https://doi.org/10.1016/j.energy.2022.126001SzoplikJ.MuchelP.2023Using an artificial neural network model for natural gas compositions forecastingEnergy263D126001https://doi.org/10.1016/j.energy.2022.126001Search in Google Scholar
Ulbig, P., Hoburg, D. (2002). Determination of the calorific value of natural gas by different methods. Thermochimica Acta, 382 (1–2), 27–35. https://doi.org/10.1016/S0040-6031(01)00732-8UlbigP.HoburgD.2002Determination of the calorific value of natural gas by different methodsThermochimica Acta3821–22735https://doi.org/10.1016/S0040-6031(01)00732-8Search in Google Scholar
Villermaux, C., Zarea, M., Haloua, F., Hay, B., Filtz, J.-R. (2006). Measurement of gas calorific value: A new frontier to be reached with an optimised reference gas calorimeter. In 23rd World Gas Conference. London, UK: International Gas Union (IGU), ISBN 9781604237573.VillermauxC.ZareaM.HalouaF.HayB.FiltzJ.-R.2006Measurement of gas calorific value: A new frontier to be reached with an optimised reference gas calorimeterIn23rd World Gas ConferenceLondon, UKInternational Gas Union (IGU)ISBN 9781604237573.Search in Google Scholar
Zhang, T. (2020). Flow measurement of natural gas in pipeline based on 1D-convolutional neural network. International Journal of Computational Intelligence Systems, 13 (1), 1198–1206. https://doi.org/10.2991/ijcis.d.200803.002ZhangT.2020Flow measurement of natural gas in pipeline based on 1D-convolutional neural networkInternational Journal of Computational Intelligence Systems13111981206https://doi.org/10.2991/ijcis.d.200803.002Search in Google Scholar
Zhang, J., Feng, Q., Zhang, X., Zhang, X., Yuan, N., Wen, S., Wang, S., Zhang, A. (2015). The use of an artificial neural network to estimate natural gas/water interfacial tension. Fuel, 157, 28–36. https://doi.org/10.1016/j.fuel.2015.04.057ZhangJ.FengQ.ZhangX.ZhangX.YuanN.WenS.WangS.ZhangA.2015The use of an artificial neural network to estimate natural gas/water interfacial tensionFuel1572836https://doi.org/10.1016/j.fuel.2015.04.057Search in Google Scholar