Open Access

Prediction of the Natural Gas Compressibility Factor by using MLP and RBF Artificial Neural Networks

,  and   
Feb 24, 2025

Cite
Download Cover

Dranchuk, P. M., Abou-Kassem, H. (1975). Calculation of Z factors for natural gases using equations of state. Journal of Canadian Petroleum Technology, 14 (03). https://doi.org/10.2118/75-03-03 DranchukP. M. Abou-KassemH. 1975 Calculation of Z factors for natural gases using equations of state Journal of Canadian Petroleum Technology 14 03 https://doi.org/10.2118/75-03-03 Search in Google Scholar

Ajorkaran, F., Sefidi, A. C. (2019). Application of RBF-ANN in prediction of natural gas density in different operational conditions. Petroleum Science and Technology, 37 (22). https://doi.org/10.1080/10916466.2018.1476888 AjorkaranF. SefidiA. C. 2019 Application of RBF-ANN in prediction of natural gas density in different operational conditions Petroleum Science and Technology 37 22 https://doi.org/10.1080/10916466.2018.1476888 Search in Google Scholar

Carotenuto, A., Giovinco, G., Viglietti, B., Vanoli, L. (2005). A new procedure for the determination of calibration curves for a gas chromatograph used in natural gas analysis. Chemometrics and Intelligent Laboratory Systems, 75 (2), 209–217. https://doi.org/10.1016/j.chemolab.2004.06.008 CarotenutoA. GiovincoG. VigliettiB. VanoliL. 2005 A new procedure for the determination of calibration curves for a gas chromatograph used in natural gas analysis Chemometrics and Intelligent Laboratory Systems 75 2 209 217 https://doi.org/10.1016/j.chemolab.2004.06.008 Search in Google Scholar

Cimerman, F., Jarm, M., Širok, B., Blagojevič, B. (2016). Taking in account measuring errors of volume conversion devices in measuring of the volume of natural gas. Journal of Mechanical Engineering, 62 (2), 95–104. https://doi.org/10.5545/sv-jme.2015.2948 CimermanF. JarmM. ŠirokB. BlagojevičB. 2016 Taking in account measuring errors of volume conversion devices in measuring of the volume of natural gas Journal of Mechanical Engineering 62 2 95 104 https://doi.org/10.5545/sv-jme.2015.2948 Search in Google Scholar

Le Corre, O., Loubar, K. (2010). Natural gas: Physical properties and combustion features. In Natural Gas. IntechOpen. http://dx.doi.org/10.5772/9823 Le CorreO. LoubarK. 2010 Natural gas: Physical properties and combustion features In Natural Gas IntechOpen http://dx.doi.org/10.5772/9823 Search in Google Scholar

Coull, C., Spearman, E., Laidlaw, J. (2009). Real life ultrasonic flowmeter verification for upstream custody transfer metering of natural gas. In XIX IMEKO World Congress: Fundamental and Applied Metrology. IMEKO, 1276–1281. ISBN 978-963-88410-0-1. CoullC. SpearmanE. LaidlawJ. 2009 Real life ultrasonic flowmeter verification for upstream custody transfer metering of natural gas In XIX IMEKO World Congress: Fundamental and Applied Metrology IMEKO 1276 1281 ISBN 978-963-88410-0-1. Search in Google Scholar

Dell'Isola, M., Cannizzo, M., Diritti, M. (1997). Measurement of high-pressure natural gas flow using ultrasonic flowmeters. Measurement, 20 (2), 75–89. https://doi.org/10.1016/S0263-2241(97)00016-X Dell'IsolaM. CannizzoM. DirittiM. 1997 Measurement of high-pressure natural gas flow using ultrasonic flowmeters Measurement 20 2 75 89 https://doi.org/10.1016/S0263-2241(97)00016-X Search in Google Scholar

Dong, J., Song, B., He, F., Xu, Y., Wang, Q., Li, W., Zhang, P. (2023). Research on a hybrid intelligent method for natural gas energy metering. Sensors, 23 (14), 6528. https://doi.org/10.3390/s23146528 DongJ. SongB. HeF. XuY. WangQ. LiW. ZhangP. 2023 Research on a hybrid intelligent method for natural gas energy metering Sensors 23 14 6528 https://doi.org/10.3390/s23146528 Search in Google Scholar

Elsayed, M. A., Alsabaa, A., Salem, A. M. (2023). Different machine learning approaches to predict gas deviation factor (Z-factor). Journal of Petroleum and Mining Engineering, 25 (1), 88–96. https://doi.org/10.21608/jpme.2023.177642.1145 ElsayedM. A. AlsabaaA. SalemA. M. 2023 Different machine learning approaches to predict gas deviation factor (Z-factor) Journal of Petroleum and Mining Engineering 25 1 88 96 https://doi.org/10.21608/jpme.2023.177642.1145 Search in Google Scholar

Faramawy, S., Zaki, T., Sakr, A. A.-E. (2016). Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, 34, 34–54. https://doi.org/10.1016/j.jngse.2016.06.030 FaramawyS. ZakiT. SakrA. A.-E. 2016 Natural gas origin, composition, and processing: A review Journal of Natural Gas Science and Engineering 34 34 54 https://doi.org/10.1016/j.jngse.2016.06.030 Search in Google Scholar

Farzaneh-Gord, M., Mohseni-Gharyehsafa, B., Ebrahimi-Moghadam, A., Jabari-Moghadam, A., Toikka, A., Zvereva, I. (2018). Precise calculation of natural gas sound speed using neural networks: An application in flow meter calibration. Flow Measurement and Instrumentation, 64, 90–103. https://doi.org/10.1016/j.flowmeasinst.2018.10.013 Farzaneh-GordM. Mohseni-GharyehsafaB. Ebrahimi-MoghadamA. Jabari-MoghadamA. ToikkaA. ZverevaI. 2018 Precise calculation of natural gas sound speed using neural networks: An application in flow meter calibration Flow Measurement and Instrumentation 64 90 103 https://doi.org/10.1016/j.flowmeasinst.2018.10.013 Search in Google Scholar

Farzaneh-Gord, M., Rahbari, H. R., Mohseni-Gharesafa, B., Toikka, A., Zvereva, I. (2021). Accurate determination of natural gas compressibility factor by measuring temperature, pressure and Joule-Thomson coefficient: Artificial neural network approach. Journal of Petroleum Science and Engineering, 202, 108427. https://doi.org/10.1016/j.petrol.2021.108427 Farzaneh-GordM. RahbariH. R. Mohseni-GharesafaB. ToikkaA. ZverevaI. 2021 Accurate determination of natural gas compressibility factor by measuring temperature, pressure and Joule-Thomson coefficient: Artificial neural network approach Journal of Petroleum Science and Engineering 202 108427 https://doi.org/10.1016/j.petrol.2021.108427 Search in Google Scholar

Ficco, G., Dell’Isola, M., Vigo, P., Celenza, L. (2015). Uncertainty analysis of energy measurements in natural gas transmission networks. Flow Measurement and Instrumentation, 42, 58–68. https://doi.org/10.1016/j.flowmeasinst.2015.01.006 FiccoG. Dell’IsolaM. VigoP. CelenzaL. 2015 Uncertainty analysis of energy measurements in natural gas transmission networks Flow Measurement and Instrumentation 42 58 68 https://doi.org/10.1016/j.flowmeasinst.2015.01.006 Search in Google Scholar

Haloua, F., Ponsard, J.-N., Lartigue, G., Hay, B., Villermaux, C., Foulon, E., Zaréa, M. (2012). Thermal behaviour modelling of a reference calorimeter for natural gas. International Journal of Thermal Sciences, 55, 40–47. https://doi.org/10.1016/j.ijthermalsci.2011.12.014 HalouaF. PonsardJ.-N. LartigueG. HayB. VillermauxC. FoulonE. ZaréaM. 2012 Thermal behaviour modelling of a reference calorimeter for natural gas International Journal of Thermal Sciences 55 40 47 https://doi.org/10.1016/j.ijthermalsci.2011.12.014 Search in Google Scholar

Heinig, D., Starke, E., Ullman, F., Wrath, A. (2022). Measuring hydrogen and hydrogen enriched natural gas flows with ultrasonic flow meters – experiences and perspectives. In Global Flow Measurement Workshop. Glasgow, Scotland: TÜV SÜD National Engineering Laboratory. HeinigD. StarkeE. UllmanF. WrathA. 2022 Measuring hydrogen and hydrogen enriched natural gas flows with ultrasonic flow meters – experiences and perspectives In Global Flow Measurement Workshop Glasgow, Scotland TÜV SÜD National Engineering Laboratory Search in Google Scholar

Bergervoet, J. T. M. (2003). Spin-Offs from the development of rotary gas meters. In 11th Conference on Flow Measurement. IMEKO, 472–486. ISBN 978-1-63439-896-1. BergervoetJ. T. M. 2003 Spin-Offs from the development of rotary gas meters In 11th Conference on Flow Measurement IMEKO 472 486 ISBN 978-1-63439-896-1. Search in Google Scholar

Kamyab, M., Sampaio Jr., J. H. B, Qanbari, F., Eustes III, A. W. (2010). Using artificial neural networks to estimate the z-factor for natural hydrocarbon gases. Journal of Petroleum Science and Engineering, 73 (3–4), 248–257. https://doi.org/10.1016/j.petrol.2010.07.006 KamyabM. SampaioJ. H. BJr. QanbariF. EustesA. W.III 2010 Using artificial neural networks to estimate the z-factor for natural hydrocarbon gases Journal of Petroleum Science and Engineering 73 3–4 248 257 https://doi.org/10.1016/j.petrol.2010.07.006 Search in Google Scholar

Karpash, O., Darvay, I., Karpash, M. (2010). New approach to natural gas quality determination. Journal of Petroleum Science and Engineering, 71 (3–4), 133–137. https://doi.org/10.1016/j.petrol.2009.12.012 KarpashO. DarvayI. KarpashM. 2010 New approach to natural gas quality determination Journal of Petroleum Science and Engineering 71 3–4 133 137 https://doi.org/10.1016/j.petrol.2009.12.012 Search in Google Scholar

Katz, D. L., Cornell, D., Vary, J. A., Kobayashi, R., Elenbass, J. R., Poehmann, F. H., Weinaug, C. F. (1959). Handbook of Natural Gas Engineering. McGraw-Hill, ISBN 978-0070333840. KatzD. L. CornellD. VaryJ. A. KobayashiR. ElenbassJ. R. PoehmannF. H. WeinaugC. F. 1959 Handbook of Natural Gas Engineering McGraw-Hill ISBN 978-0070333840. Search in Google Scholar

López-González, L. M., Sala, J. M., González-Bustamante, J. A., Míguez, J. L. (2006). Modelling and simulation of the dynamic performance of a natural-gas turbine flowmeter. Applied Energy, 83 (11), 1222–1234. https://doi.org/10.1016/j.apenergy.2005.12.002 López-GonzálezL. M. SalaJ. M. González-BustamanteJ. A. MíguezJ. L. 2006 Modelling and simulation of the dynamic performance of a natural-gas turbine flowmeter Applied Energy 83 11 1222 1234 https://doi.org/10.1016/j.apenergy.2005.12.002 Search in Google Scholar

Salehuddin, N. F., Omar, M. B., Ibrahim, R., Bingi, K. (2022). A neural network-based model for predicting Saybolt color of petroleum products. Sensors, 22 (7), 2796. https://doi.org/10.3390/s22072796 SalehuddinN. F. OmarM. B. IbrahimR. BingiK. 2022 A neural network-based model for predicting Saybolt color of petroleum products Sensors 22 7 2796 https://doi.org/10.3390/s22072796 Search in Google Scholar

Santhosh, K. V., Roy, B. K. (2012). An intelligent flow measurement technique using ultrasonic flow meter with optimized neural network. International Journal of Control and Automation, 5 (4), 185–196. SanthoshK. V. RoyB. K. 2012 An intelligent flow measurement technique using ultrasonic flow meter with optimized neural network International Journal of Control and Automation 5 4 185 196 Search in Google Scholar

Shateri, M. H., Ghorbani, S., Hemmati-Sarapardeh, A., Mohammadi, A. H. (2015). Application of Wilcoxon generalized radial basis function network for prediction of natural gas compressibility factor. Journal of the Taiwan Institute of Chemical Engineers, 50, 131–141. https://doi.org/10.1016/j.jtice.2014.12.011 ShateriM. H. GhorbaniS. Hemmati-SarapardehA. MohammadiA. H. 2015 Application of Wilcoxon generalized radial basis function network for prediction of natural gas compressibility factor Journal of the Taiwan Institute of Chemical Engineers 50 131 141 https://doi.org/10.1016/j.jtice.2014.12.011 Search in Google Scholar

Su, L., Zhao, J., Wang, W. (2021). Hybrid physical and data driven transient modeling for natural gas networks. Journal of Natural Gas Science and Engineering, 95, 104146. https://doi.org/10.1016/j.jngse.2021.104146 SuL. ZhaoJ. WangW. 2021 Hybrid physical and data driven transient modeling for natural gas networks Journal of Natural Gas Science and Engineering 95 104146 https://doi.org/10.1016/j.jngse.2021.104146 Search in Google Scholar

Su, M., Zhang, Z., Zhu, Y., Zha, D., Wen, W. (2019). Data driven natural gas spot price prediction models using machine learning methods. Energies, 12 (9), 1680. https://doi.org/10.3390/en12091680 SuM. ZhangZ. ZhuY. ZhaD. WenW. 2019 Data driven natural gas spot price prediction models using machine learning methods Energies 12 9 1680 https://doi.org/10.3390/en12091680 Search in Google Scholar

Szoplik, J., Muchel, P. (2023). Using an artificial neural network model for natural gas compositions forecasting. Energy, 263 (D), 126001. https://doi.org/10.1016/j.energy.2022.126001 SzoplikJ. MuchelP. 2023 Using an artificial neural network model for natural gas compositions forecasting Energy 263 D 126001 https://doi.org/10.1016/j.energy.2022.126001 Search in Google Scholar

Ulbig, P., Hoburg, D. (2002). Determination of the calorific value of natural gas by different methods. Thermochimica Acta, 382 (1–2), 27–35. https://doi.org/10.1016/S0040-6031(01)00732-8 UlbigP. HoburgD. 2002 Determination of the calorific value of natural gas by different methods Thermochimica Acta 382 1–2 27 35 https://doi.org/10.1016/S0040-6031(01)00732-8 Search in Google Scholar

Villermaux, C., Zarea, M., Haloua, F., Hay, B., Filtz, J.-R. (2006). Measurement of gas calorific value: A new frontier to be reached with an optimised reference gas calorimeter. In 23rd World Gas Conference. London, UK: International Gas Union (IGU), ISBN 9781604237573. VillermauxC. ZareaM. HalouaF. HayB. FiltzJ.-R. 2006 Measurement of gas calorific value: A new frontier to be reached with an optimised reference gas calorimeter In 23rd World Gas Conference London, UK International Gas Union (IGU) ISBN 9781604237573. Search in Google Scholar

Zhang, T. (2020). Flow measurement of natural gas in pipeline based on 1D-convolutional neural network. International Journal of Computational Intelligence Systems, 13 (1), 1198–1206. https://doi.org/10.2991/ijcis.d.200803.002 ZhangT. 2020 Flow measurement of natural gas in pipeline based on 1D-convolutional neural network International Journal of Computational Intelligence Systems 13 1 1198 1206 https://doi.org/10.2991/ijcis.d.200803.002 Search in Google Scholar

Zhang, J., Feng, Q., Zhang, X., Zhang, X., Yuan, N., Wen, S., Wang, S., Zhang, A. (2015). The use of an artificial neural network to estimate natural gas/water interfacial tension. Fuel, 157, 28–36. https://doi.org/10.1016/j.fuel.2015.04.057 ZhangJ. FengQ. ZhangX. ZhangX. YuanN. WenS. WangS. ZhangA. 2015 The use of an artificial neural network to estimate natural gas/water interfacial tension Fuel 157 28 36 https://doi.org/10.1016/j.fuel.2015.04.057 Search in Google Scholar

Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing