Cite

Alhawari, M., Mohammad, B., Saleh, H., Ismail, M. (2018). Energy harvesting for self-powered wearable devices. Springer. https://doi.org/10.1007/978-3-319-62578-2. Search in Google Scholar

Gattiker, A., Nigh, P., Aitken, R. (2011). An overview of integrated circuit testing methods. In Microelectronics Failure Analysis: Desk Reference, 7th Edition. ASM International, 634–642. https://doi.org/10.31399/asm.tb.mfadr7.t91110634. Search in Google Scholar

Ooi, M. P. L., Kassim, Z. A., & Demidenko, S. N. (2007). Shortening burn-in test: Application of HVST and Weibull statistical analysis. IEEE Transactions on instrumentation and measurement, 56(3), 990-999. https://doi.org/10.1109/TIM.2007.894165. Search in Google Scholar

Grout, I. A. (2005). Integrated circuit test engineering: modern techniques. Springer. https://doi.org/10.1007/1-84628-173-3. Search in Google Scholar

Mancini, R. (2003). Op Amps for Everyone: Design Reference. Newnes. https://doi.org/10.1016/B978-0-7506-7701-1.X5000-7. Search in Google Scholar

Baker, R. J. (2019). CMOS: Circuit Design, Layout, and Simulation, 4th Edition. Wiley-IEEE Press. ISBN 978-1-119-48151-5. Search in Google Scholar

Arbet, D., Nagy, G., Kovač, M., & Stopjakova, V. (2015). Fully differential difference amplifier for lownoise applications. In 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems. IEEE, 57–62. https://doi.org/10.1109/DDECS.2015.38. Search in Google Scholar

Huang, S.-C., Ismail, M. (1994). Design of a CMOS differential difference amplifier and its applications in A/D and D/A converters. In Proceedings of APCCAS’94 - 1994 Asia Pacific Conference on Circuits and Systems. IEEE, 478-483. https://doi.org/10.1109/APCCAS.1994.514597. Search in Google Scholar

Arbet, D., Nagy, G., Kovač, M., Stopjakova, V. (2016). Fully differential difference amplifier for low-noise and low-distortion applications. Journal of Circuits, Systems and Computers, 25(03), 1640019. https://doi.org/10.1142/S0218126616400193. Search in Google Scholar

Potočny, M., Šovčik, M., Arbet, D., Stopjakova, V., Kovač, M. (2018). New input offset voltage measurement setup for ultra low-voltage fully differential amplifier. In 2018 International Conference on Applied Electronics (AE). IEEE. https://doi.org/10.23919/AE.2018.8501424. Search in Google Scholar

Sackinger, E., Guggenbuhl, W. (1987). A versatile building block: The CMOS differential difference amplifier. IEEE Journal of Solid-State Circuits, 22(2), 287-294. https://doi.org/10.1109/JSSC.1987.1052715. Search in Google Scholar

Mohamed, A. R., Ibrahim, M. F., Farag, F. (2013). Input offset cancellation trimming technique for operational amplifiers. In 2013 Saudi International Electronics, Communications and Photonics Conference. IEEE. https://doi.org/10.1109/SIECPC.2013.6550758. Search in Google Scholar

Analog Devices. (2009). Op amp input offset voltage. MT-037 Tutorial. https://www.analog.com/media/en/training-seminars/tutorials/MT-037.pdf. Search in Google Scholar

Zhou, J., Liu, J. (2005). On the measurement of common-mode rejection ratio. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(1), 49-53. https://doi.org/10.1109/TCSII.2004.838332. Search in Google Scholar

Terrell, D. (1996). Op Amps: Design, Application, and Troubleshooting. Newnes. ISBN 0750697024. Search in Google Scholar

Analog Devices. (2009). Op amp commonmode rejection ratio (CMRR). MT-042 Tutorial. https://www.analog.com/media/en/training-seminars/tutorials/MT-042.pdf. Search in Google Scholar

Jung, W. (2005). Op Amp Applications Handbook. Newnes. https://doi.org/10.1016/B978-0-7506-7844-5.X5109-1. Search in Google Scholar

Zumbahlen, H. with the engineering staff of Analog Devices. (2008). Linear Circuit Ddesign Handbook. Newnes. https://doi.org/10.1016/B978-0-7506-8703-4.X0001-6. Search in Google Scholar

Hudec, A., Ravasz, R., Arbet, D., Stopjakova, V. (2021). A control system for automated evaluation and tuning of ASIC parameters. In 2021 International Conference on Applied Electronics (AE). IEEE. https://doi.org/10.23919/AE51540.2021.9542883. Search in Google Scholar

Maxim Integrated Products, Inc. (2017). MAX4200- MAX4205 Ultra-High-Speed, Low-Noise, Low- Power, SOT23 Open-Loop Buffers. Data Sheet. https://www.analog.com/media/en/technical-documentation/data-sheets/max4200-max4205.pdf Search in Google Scholar

Maxim Integrated Products, Inc. (2017). MAX44250/MAX44251/MAX44252, 20V, Ultra- Precision, Low-Noise Op Amps. Data Sheet. https://www.analog.com/media/en/technical-documentation/data-sheets/max44250-max44252.pdf Search in Google Scholar

Texas Instruments, (2023). THS4505, Wideband, Low-Distortion, Fully Differential Amplifiers. Data Sheet. https://www.ti.com/lit/ds/symlink/ths4505.pdf Search in Google Scholar

Texas Instruments, (2023). OPA3695, Triple, Ultra- Wideband, Current-Feedback Operational Amplifier With Disable. Data Sheet. https://www.ti.com/lit/ds/symlink/opa3695.pdf Search in Google Scholar

Kulej, T., Khateb, F. (2015). 0.4-V bulk-driven differential-difference amplifier. Microelectronics Journal, 46(5), 362-369. https://doi.org/10.1016/j.mejo.2015.02.009 Search in Google Scholar

Ong, G. T., Chan, P. K. (2010). A micropower gatebulk driven differential difference amplifier with folded telescopic cascode topology for sensor applications. In 2010 53rd IEEE International Midwest Symposium on Circuits and Systems. IEEE, 193-196. https://doi.org/10.1109/MWSCAS.2010.5548698 Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing