Open Access

Estimation of Energy Meter Accuracy using Remote Non-invasive Observation


Cite

[1] Li, N., Yang, J., Sun, Y., Wang, G., Zhang, J., Liu, C. (2018). Failure modes and effects analysis for domestic electric energy meter using in-service data. IOP Conference Series: Earth and Environmental Science (EES), 108 (5), 052036. https://doi.org/10.1088/1755-1315/108/5/05203610.1088/1755-1315/108/5/052036 Search in Google Scholar

[2] Yang, Z., Chen, Y.X., Li, Y.F., Zio, E., Kang, R. (2014). Smart electricity meter reliability prediction based on accelerated degradation testing and modeling. International Journal of Electrical Power & Energy Systems, 56, 209-219. https://doi.org/10.1016/j.ijepes.2013.11.02310.1016/j.ijepes.2013.11.023 Search in Google Scholar

[3] Nakutis, Ž., Kaškonas, P., Saunoris, M., Daunoras, V., Jurčevic, M. (2021). A framework for remote in-service metrological surveillance of energy meters. Measurement, 168, 108438. https://doi.org/10.1016/j.measurement.2020.10843810.1016/j.measurement.2020.108438 Search in Google Scholar

[4] Nakutis, Ž., Kaškonas, P. (2020). A contemplation on electricity meters in-service surveillance assisted by remote error monitoring. Energies, 13 (20), 5245. https://doi.org/10.3390/en1320524510.3390/en13205245 Search in Google Scholar

[5] European Commission. (2018). Smart grids and meters. https://ec.europa.eu/energy/topics/markets-and-consumers/smart-grids-and-meters/overview_en?redir=1 Search in Google Scholar

[6] Nakutis, Ž., Saunoris, M., Ramanauskas, R., Daunoras, V., Lukočius, R., Marčiulionis, P. (2019). A method for remote estimation of wattmeter’s adjustment gain. IEEE Transactions on Instrumentation and Measurement, 68 (3), 713-721. https://doi.org/10.1109/TIM.2018.285711810.1109/TIM.2018.2857118 Search in Google Scholar

[7] Lukočius, R., Nakutis, Ž., Daunoras, V., Deltuva, R., Kuzas, P., Račkiene, R. (2019). An analysis of the systematic error of a remote method for a wattmeter adjustment gain estimation in smart grids. Energies, 12 (1), 37. https://doi.org/10.3390/en1201003710.3390/en12010037 Search in Google Scholar

[8] Seppa, H. (2007). Method and system for the calibration of meters. WO 2007/063180 A1, Patent Cooperation Treaty (PCT). http://www.freepatentsonline.com/WO2007063180.html Search in Google Scholar

[9] Kong, X., Ma, Y., Zhao, X., Li, Y., Teng, Y. (2019). A recursive least squares method with double-parameter for online estimation of electric meter errors. Energies, 12 (5), 805. https://doi.org/10.3390/en1205080510.3390/en12050805 Search in Google Scholar

[10] Liu, F., Liang, C., He, Q. (2020). Remote malfunctional smart meter detection in edge computing environment. IEEE Access, 8, 67436-67443. https://doi.org/10.1109/ACCESS.2020.298572510.1109/ACCESS.2020.2985725 Search in Google Scholar

[11] Nakutis, Ž., Rinaldi, S., Kuzas, P., Lukočius, R. (2020). A method for noninvasive remote monitoring of energy meter error using power consumption profile. IEEE Transactions on Instrumentation and Measurement, 69 (9), 6677-6685. https://doi.org/10.1109/TIM.2020.300240210.1109/TIM.2020.3002402 Search in Google Scholar

[12] Daunoras, V. (2021). A method for remote monitoring of electrical energy meter errors. Thesis, Kaunas University of technology, Kaunas, Lithuania. https://en.ktu.edu/events/v-daunoras-a-method-for-remote-monitoring-of-electrical-energy-meter-errors-doctoral-dissertation-defence/ Search in Google Scholar

[13] Abate, F., Carratu, M., Liguori, C., Paciello, V. (2019). A low cost smart power meter for IoT. Measurement, 136, 59-66. https://doi.org/10.1016/j.measurement.2018.12.06910.1016/j.measurement.2018.12.069 Search in Google Scholar

[14] Artale, G., Cataliotti, A., Cosentino, V., Di Cara, D., Fiorelli, R., Guaiana, S., Panzavecchia, N., Tine, G. (2018). A new PLC-based smart metering architecture for medium/low voltage grids: Feasibility and experimental characterization. Measurement, 129, 479-488. https://doi.org/10.1016/j.measurement.2018.07.07010.1016/j.measurement.2018.07.070 Search in Google Scholar

[15] Avancini, D.B., Rodrigues, J.J.P.C., Martins, S.G.B., Rabelo, R.A.L., Al-Muhtadi, J., Solic, P. (2019). Energy meters evolution in smart grids: A review. Journal of Cleaner Production, 217, 702-715. https://doi.org/10.1016/j.jclepro.2019.01.22910.1016/j.jclepro.2019.01.229 Search in Google Scholar

[16] Matanza, J., Alexandres S., Rodríguez-Morcillo, C. (2014). Advanced metering infrastructure performance using European low-voltage power line communication networks. IET Communications, 8 (7), 1041-1047. https://doi.org/10.1049/iet-com.2013.079310.1049/iet-com.2013.0793 Search in Google Scholar

[17] Bat-Erdene, B., Lee, B., Kim, M.-Y., Ahn, T.H., Kim, D. (2013). Extended smart meters-based remote detection method for illegal electricity usage. IET Generation, Transmission & Distribution, 7 (11), 1332-1343. https://doi.org/10.1049/iet-gtd.2012.028710.1049/iet-gtd.2012.0287 Search in Google Scholar

[18] Pflugradt, N. (2021). Load profile generator. https://www.loadprofilegenerator.de Search in Google Scholar

[19] Pflugradt, N., Teuscher, J., Platzer, B., Schufft, W. (2013). Analysing low-voltage grids using a behaviour based load profile generator. In Renewable Energy & Power Quality Journal, 1 (11), 361-365. https://doi.org/10.24084/repqj11.30810.24084/repqj11.308 Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing