1. bookVolume 20 (2020): Issue 3 (June 2020)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Novel Method of Contactless Sensing of Mechanical Quantities

Published Online: 24 Jul 2020
Volume & Issue: Volume 20 (2020) - Issue 3 (June 2020)
Page range: 150 - 156
Received: 25 Apr 2020
Accepted: 13 Jul 2020
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

This article addresses the method of sensing mechanical quantities, in particular force and pressure, without the electrical connection of the sensing element and the electronics. The information about the mechanical quantity is transmitted only by evaluating the changes in the electromagnetic field created around the sensor. The sensor is designed on the basis of a flexible micro-electro-mechanical element (MEMS), the resonance of which carries the information about the measured quantity.

Keywords

[1] Nie, B., Yao, T., Zhang, Y., Liu, J., Chen, X. (2018). A droplet-based passive force sensor for remote tactile sensing applications. Applied Physics Letters, 112, 031904. https://doi.org/10.1063/1.5005873.10.1063/1.5005873Search in Google Scholar

[2] Nakazato, Y., Kawanaka, K., Takita, K., Higuchi, M. (2017). Development of peristaltically propelled active catheter used in radial artery. In Microactuators and Micromechanisms: Proceedings of MAMM-2016, Ilmenau, Germany, October 5-7, 2016. Springer, 79-90. https://doi.org/10.1007/978-3-319-45387-3_8.10.1007/978-3-319-45387-3_8Search in Google Scholar

[3] Howell, L.L., Magleby, S.P., Olsen, B.M. (eds.) (2013). Handbook of Compliant Mechanisms. John Wiley & Sons. https://doi.org/10.1002/9781118516485.ch1.10.1002/9781118516485.ch1Search in Google Scholar

[4] Wei, J., Fatikow, S., Zhang, X., Haenssler, O.C. (2018). Design and experimental evaluation of a compliant mechanism-based stepping-motion actuator with multi-mode. Smart Materials and Structures, 27, 105014. https://doi.org/10.1088/1361-665X/aad79e.10.1088/1361-665X/aad79eSearch in Google Scholar

[5] Kumar, K., Zindani, D., Kumari, N., Davim, J.P. (eds.) (2019). Micro and Nano Machining of Engineering Materials. Springer International Publishing. https://doi.org/10.1007/978-3-319-99900-5.10.1007/978-3-319-99900-5Search in Google Scholar

[6] Lu, H., Wang, P., Tan, R., Yang, X., Shen, Y. (2018). Nanorobotic system for precise in situ three-dimensional manufacture of helical microstructures. IEEE Robotics and Automation Letters, 3 (4), 2846-2853. https://doi.org/10.1109/LRA.2018.2846051.10.1109/LRA.2018.2846051Search in Google Scholar

[7] Plander, I., Stepanovsky, M. (2018). Interdisciplinary considerations on the design of MEMS actuators from a perspective of their optimality. Sensors and Actuators A: Physical, 269, 203-211. https://doi.org/10.1016/j.sna.2017.11.007.10.1016/j.sna.2017.11.007Search in Google Scholar

[8] Hricko, J., Havlik, S. (2017). Flexural body for a wireless force/displacement sensor. Microactuators and Micromechanisms: Proceedings of MAMM-2016, Ilmenau, Germany, October 5-7, 2016. Springer, 59-66. https://doi.org/10.1007/978-3-319-45387-3_6.10.1007/978-3-319-45387-3_6Search in Google Scholar

[9] Hartansky, R., Hallon, J. (2016). Sensors for Measure Electromagnetic Field [Senzory pre meranie elektromagnetickeho pola]. Bratislava: Slovenska technicka univerzita v Bratislave, ISBN 978-80-227-4565-9. (in Slovak)Search in Google Scholar

[10] Hartansky, R., Marsalka, L. (2012). Wire structures mutual impedance change in electromagnetic field. Journal of Electrical Engineering, 63 (7s), 152-155.Search in Google Scholar

[11] Marsalka, L., Hartansky, R. (2011). Electromagnetic method for distance measurement on MEMS structures. In MM Science Journal: Proceedings of the RAAD 2011, 20th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD), 5-7 October 2011, Brno, Czech Republic, Special Edition, 48-53.Search in Google Scholar

[12] Hartansky, R., Halgos, J., Hricko, J., Rafaj, M. (2019). Method and device for contactless sensing of mechanical quantities [Sposob a zariadenie na bezkontaktne snimanie mechanickych velicin]. Slovak Utility Model SK 8653 Y1. (in Slovak)Search in Google Scholar

[13] Muller, I., de Brito, R.M., Pereira, C.E., Brusamarello, V. (2010). Load cells in force sensing analysis --theory and a novel application. IEEE Instrumentation & Measurement Magazine, 13 (1), 15-19. https://doi.org/10.1109/MIM.2010.5399212.10.1109/MIM.2010.5399212Search in Google Scholar

[14] Liang, Q., Wu, W., Zhang, D., Wei, B., Sun, W., Wang, Y., Ge, Y. (2015). Design and analysis of a micromechanical three-component force sensor for characterizing and quantifying surface roughness. Measurement Science Review, 15 (5), 248-255. https://doi.org/10.1515/msr-2015-0034.10.1515/msr-2015-0034Search in Google Scholar

[15] Allan, H.R., Curling, C.D. (1948). The design and use of resonant cavity wavemeters for spectrum measurements of pulsed transmitters at wavelengths near 10 cm. Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering, 95 (38), 473-484. https://doi.org/10.1049/ji-3-2.1948.0117.10.1049/ji-3-2.1948.0117Search in Google Scholar

[16] Books, M., Turner, H.M. (1912). Inductance of coil. University of Illinois Bulletin, 9 (10), 53.Search in Google Scholar

[17] Mierka, M. (2019). Realization of a TEM cell. In Measurement 2019: 12th International Conference on Measurement. Bratislava: Slovak Academy of Sciences, 162-166. https://doi.org/10.23919/MEASUREMENT47340.2019.8779907.10.23919/MEASUREMENT47340.2019.8779907Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo