1. bookVolume 20 (2020): Issue 2 (April 2020)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Importance of Basset History Force for the Description of Magnetically Driven Motion of Magnetic Particles in Air

Published Online: 02 Jun 2020
Volume & Issue: Volume 20 (2020) - Issue 2 (April 2020)
Page range: 50 - 58
Received: 16 Oct 2019
Accepted: 02 Mar 2020
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

Lungs are used as an attractive possibility for administration of different therapeutic substances for a long time. An innovative method of such administration widely studied nowadays is the application of aerosolized magnetic particles as the carriers to the lungs in the external non-homogeneous magnetic field. For these reasons we have studied dynamics of such a system on a level of particle trajectory in air in the presence of magnetic force as a driving force exerted on micrometric magnetic particle. On two typical examples of magnetically driven systems—motion of magnetic particle in a gradient magnetic field and cyclotron-like motion of a charged particle in homogeneous magnetic field in microscale, where the external accelerating forces are very large and the relevant time scale is of the order from fraction of milliseconds to seconds, we have examined the importance of these forces. As has been shown, for particles with high initial acceleration, not only the commonly used Stokes force but also the Basset history force should be used for correct description of the motion.

Keywords

[1] Golozar, M., Molki, M., Darabi, J. (2017). Computational and performance analysis of a continuous magnetophoretic bioseparation chip with alternating magnetic fields. Microfluid. Nanofluid. 21(4), 73.10.1007/s10404-017-1909-4Search in Google Scholar

[2] Gomez-Pastora, J., Karampelas, I. H., Xue, X., Bringas, E., Furlani, E. P., Ortiz, I. (2017)a. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: Theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C 121(13), 7466–7477.Search in Google Scholar

[3] Gomez-Pastora, J., Xue, X., Karampelas, I., Bringas, E., Furlani, E. P., Ortiz, I. (2017)b. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep. Purif. Technol. 172, 16–31.10.1016/j.seppur.2016.07.050Search in Google Scholar

[4] Babinec, P., Krafcik, A., Babincova, M., Rosenecker, J. (2010). Dynamics of magnetic particles in cylindrical Halbach array: Implications for magnetic cell separation and drug targeting. Med. Biol. Eng. Comput. 48(8), 745–753.10.1007/s11517-010-0636-820517710Search in Google Scholar

[5] Krafcik, A., Babinec, P., Babincova, M. (2010). Feasibility of subcutaneously implanted magnetic microar-rays for site specific drug and gene targeting. J. Eng. Sci. Technol. Rev. 3(1), 53–57.10.25103/jestr.031.10Search in Google Scholar

[6] Durdik, S., Krafcik, A., Babincova, M., Babinec, P. (2013). Conceptual design of integrated microfluidic system for magnetic cell separation, electroporation, and transfection. Phys. Med. 29(5), 562–567.10.1016/j.ejmp.2012.11.00323260767Search in Google Scholar

[7] Krafcik, A., Babinec, P., Frollo, I. (2014). Computational analysis of magnetic field induced deposition of magnetic particles in lung alveolus in comparison to deposition produced with viscous drag and gravitational force. J. Magn. Magn. Mater. 380, 46–53.10.1016/j.jmmm.2014.10.018Search in Google Scholar

[8] Basset, A. B. (1888). A Treatise on Hydrodynamics. Cambridge: Deighton, Bell and Co.Search in Google Scholar

[9] Daitche, A., Tel, T. (2011). Memory effects are relevant for chaotic advection of inertial particles. Phys. Rev. Lett. 107(24), 244501.10.1103/PhysRevLett.107.24450122243003Search in Google Scholar

[10] Guseva, K., Feudel, U., Tel, T. (2013). Influence of the history force on inertial particle advection: Gravitational effects and horizontal diffusion. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 88(4), 042909.10.1103/PhysRevE.88.04290924229251Search in Google Scholar

[11] Daitche, A., Tel, T. (2014). Memory effects in chaotic advection of inertial particles. New J. Phys. 16, 073008.10.1088/1367-2630/16/7/073008Search in Google Scholar

[12] Elghannay, H. A., Tafti, D. K. (2016). Development and validation of a reduced order history force model. Int. J. Multiph. Flow 85, 284–297.10.1016/j.ijmultiphaseflow.2016.06.019Search in Google Scholar

[13] Guseva, K., Daitche, A., Feudel, U., Tel, T. (2016). History effects in the sedimentation of light aerosols in turbulence: The case of marine snow. Phys. Rev. Fluids 1(7).10.1103/PhysRevFluids.1.074203Search in Google Scholar

[14] van Hinsberg, M. A. T., Clercx, H. J. H., Toschi, F. (2017). Enhanced settling of nonheavy inertial particles in homogeneous isotropic turbulence: The role of the pressure gradient and the Basset history force. Phys. Rev. E 95(2), 023106.10.1103/PhysRevE.95.02310628297963Search in Google Scholar

[15] Thomas, P. J. (1992). On the influence of the Basset history force on the motion of a particle through a fluid. Phys. Fluids A 4(9), 2090–2093.10.1063/1.858379Search in Google Scholar

[16] Abbad, M., Souhar, M. (2004). Effects of the history force on an oscillating rigid sphere at low Reynolds number. Exp. Fluids. 36(5), 775–782.10.1007/s00348-003-0759-xSearch in Google Scholar

[17] Garbin, V., Dollet, B., Overvelde, M., Cojoc, D., Di Fabrizio, E., van Wijngaarden, L., Prosperetti, A., de Jong, N., Lohse, D., Versluis, M. (2009). History force on coated microbubbles propelled by ultrasound. Phys. Fluids 21(9), 092003.10.1063/1.3227903Search in Google Scholar

[18] Mei, R., Klausner, J. F., Lawrence, C. J. (1994). A note on the history force on a spherical bubble at finite Reynolds number. Phys. Fluids 6(1), 418–420.10.1063/1.868039Search in Google Scholar

[19] Klinkenberg, J., De Lange, H. C., Brandt, L. (2014). Linear stability of particle laden flows: The influence of added mass, fluid acceleration and Basset history force. Meccanica 49(4), 811–827.10.1007/s11012-013-9828-2Search in Google Scholar

[20] Olivieri, S., Picano, F., Sardina, G., Iudicone, D., Brandt, L. (2014). The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence. Phys. Fluids 26(4), 041704.10.1063/1.4871480Search in Google Scholar

[21] Krafcik, A., Babinec, P., Babincova, M., Frollo, I. (2019). High gradient magnetic separation with involved Basset history force: Configuration with single axial wire. Powder Technol. 347, 50–58.10.1016/j.powtec.2019.02.044Search in Google Scholar

[22] McKee, S., Stokes, A. (1983). Product integration methods for the nonlinear Basset equation. SIAM Journal on Numerical Analysis 20(1), 143–160.10.1137/0720010Search in Google Scholar

[23] Dorgan, A. J., Loth, E. (2007). Efficient calculation of the history force at finite Reynolds numbers. Int. J. Multiph. Flow 33(8), 833–848.10.1016/j.ijmultiphaseflow.2007.02.005Search in Google Scholar

[24] van Hinsberg, M. A. T., ten Thije Boonkkamp, J. H. M., Clercx, H. J. H. (2011). An efficient, second order method for the approximation of the Basset history force. J. Comput. Phys. 230(4), 1465–1478.10.1016/j.jcp.2010.11.014Search in Google Scholar

[25] Daitche, A. (2013). Advection of inertial particles in the presence of the history force: Higher order numerical schemes. J. Comput. Phys. 254, 93–106.10.1016/j.jcp.2013.07.024Search in Google Scholar

[26] Moreno-Casas, P. A., Bombardelli, F. A. (2016). Computation of the Basset force: Recent advances and environmental flow applications. Environ. Fluid Mechan. 16(1), 193–208.10.1007/s10652-015-9424-1Search in Google Scholar

[27] von Kriegstein, E., von Kriegstein, K. (2007). Inhaled insulin for diabetes mellitus. New Engl. J. Med. 356(20), 2106–2108.10.1056/NEJMc07609617507714Search in Google Scholar

[28] Dames, P., Gleich, B., Flemmer, A., Hajek, K., Seidl, N., Wiekhorst, F., Eberbeck, D., Bittmann, I., Berge-mann, C., Weyh, T., Trahms, L., Rosenecker, J., Rudolph, C. (2007). Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2(8), 495–499.10.1038/nnano.2007.21718654347Search in Google Scholar

[29] Laurent, S., Saei, A. A., Behzadi, S., Panahifar, A., Mahmoudi, M. (2014). Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Expert Opin. Drug Deliv. 11(9), 1449–1470.10.1517/17425247.2014.92450124870351Search in Google Scholar

[30] Price, D. N., Stromberg, L. R., Kunda, N. K., Muttil, P. (2017). In vivo pulmonary delivery and magnetic-targeting of dry powder nano-in-microparticles. Mol. Pharm. 14(12), 4741–4750.10.1021/acs.molpharmaceut.7b00532571761929068693Search in Google Scholar

[31] Russo, F., Boghi, A., Gori, F. (2018). Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract. J. Magn. Magn. Mater. 451, 554–564.10.1016/j.jmmm.2017.11.118Search in Google Scholar

[32] Maxey, M. R., Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids 26(4), 883–889.10.1063/1.864230Search in Google Scholar

[33] Michaelides, E. E. (1992). A novel way of computing the Basset term in unsteady multiphase flow computations. Phys. Fluids A 4(7), 1579–1582.10.1063/1.858430Search in Google Scholar

[34] Zborowski, M., Chalmers, J. J. (eds.) (2008). Magnetic Cell Separation, Vol. 32 of Laboratory techniques in biochemistry and molecular biology. Elsevier.Search in Google Scholar

[35] Simpson, J. C., Lane, J. E., Immer, C., Youngquist, R. C. (2001). Simple analytic expressions for the magnetic field of a circular current loop. Preprint, NTRS—NASA Technical Reports Server. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010038494.pdf accessed: 30 June 2017.Search in Google Scholar

[36] Krafcik, A., Babinec, P., Frollo, I. (2018). Stokes versus Basset: Comparison of forces governing motion of small bodies with high acceleration. Eur. J. Phys. 39(3), 035805.10.1088/1361-6404/aaabc7Search in Google Scholar

[37] Shampine, L. F., Reichelt, M. W. (1997). The MATLAB ode suite. SIAM J. Sci. Comput. 18(1), 1–22.10.1137/S1064827594276424Search in Google Scholar

[38] ThermoFischer Scientific (2018). DynabeadsTM MyOneTM. Technical report, ThermoFischer Scientific. URL: https://www.thermofisher.com/order/catalog/product/65012?SID=srch-srp-65012 accessed: 31 May 2018.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo