1. bookVolume 19 (2019): Issue 5 (October 2019)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Open Access

About not Correcting for Systematic Effects

Published Online: 07 Oct 2019
Volume & Issue: Volume 19 (2019) - Issue 5 (October 2019)
Page range: 204 - 208
Received: 06 May 2019
Accepted: 30 Aug 2019
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

In practice, measurement results are sometimes described by an estimate, which is not the best one as defined in the GUM. Such alternative estimates arise when the result of a measurement is not corrected for all systematic effects. No recommendation exists in the GUM for associating an uncertainty with an uncorrected estimate.

A common choice in guidelines and in the literature is the uncertainty u(y)=u2(y)+(y-y)2u\left( {y'} \right) = \sqrt {{u^2}\left( y \right) + {{\left( {y - y'} \right)}^2}} for an alternative estimate y′. It arises from the expected quadratic loss, on which, also in the GUM, the standard uncertainty u(y), and the best estimate y are based. However, such an uncertainty is not a standard uncertainty and we establish, it may not be used for uncertainty propagation.

One consequence is, for example, that pairs (y′, u(y′)) are not to be used in calibration certificates.

Keywords

[1] Joint Committee for Guides in Metrology (2008). Evaluation of measurement data – Guide to the expression of uncertainty in measurement. JCGM 100:2008.Search in Google Scholar

[2] Joint Committee for Guides in Metrology (2012). International vocabulary of metrology – Basic and general concepts and associated terms (VIM). JCGM 200:2012, 3 edition.Search in Google Scholar

[3] Ellison, S. L. R., Williams, A. (eds.) (2012). EURACHEM / CITAC Guide CG 4 – Quantifying Uncertainty in Analytical Measurement. EURACHEM, 3 edition. ISBN 978-0-948926-30-3.Search in Google Scholar

[4] EURAMET (2011). Uncertainty of Force Measurements, Vol. cg-4. EURAMET, 2 edition. (03/2011) ISBN 978-3-942992-03-9.Search in Google Scholar

[5] EURAMET (2015). Guidelines on the Calibration of Non-Automatic Weighing Instruments, Vol. cg-18. EURAMET, 4 edition. (11/2015) ISBN 978-3-942992-40-4.Search in Google Scholar

[6] International Organization for Standardization (2005). Gas analysis – Investigation and treatment of analytical bias. ISO 15796:2005.Search in Google Scholar

[7] International Organization for Standardization (2007). Air quality – Guidelines for estimating measurement uncertainty. ISO 20988:2007.Search in Google Scholar

[8] Deutscher Kalibrierdienst (DKD) (2018)a. Richtlinie DKD-R 3-3, Kalibrierung von Kraftmessgeräten. Braunschweig, Germany: Physikalisch-Technische Bundesanstalt.Search in Google Scholar

[9] Deutscher Kalibrierdienst (DKD) (2018)b. Richtlinie DKD-R 3-5, Kalibrierung von Drehmomentmessgeräten für statische Wechseldrehmomente. Braunschweig, Germany: Physikalisch-Technische Bundesanstalt.Search in Google Scholar

[10] Deutscher Kalibrierdienst (DKD) (2018)c. Richtlinie DKD-R 3-7, Statische Kalibrierung von anzeigenden Drehmomentschlüsseln. Braunschweig, Germany: Physikalisch-Technische Bundesanstalt.Search in Google Scholar

[11] Deutscher Kalibrierdienst (DKD) (2018)d. Richtlinie DKD-R 3-8, Statische Kalibrierung von Kalibrierein- richtungen für Drehmomentschraubwerkzeuge. Braun- schweig, Germany: Physikalisch-Technische Bunde- sanstalt.Search in Google Scholar

[12] Deutscher Kalibrierdienst (DKD) (2018)e. Richtlinie DKD-R 3-9, Kontinuierliche Kalibrierung von Kraftaufnehmern nach dem Vergleichsverfahren. Braunschweig, Germany: Physikalisch-Technische Bundesanstalt.Search in Google Scholar

[13] Deutscher Kalibrierdienst (DKD) (2014). Richtlinie DKD-R 6-1, Kalibrierung von Druckmessgeräten. Braunschweig, Germany: Physikalisch-Technische Bundesanstalt. Revision 2.Search in Google Scholar

[14] Phillips, S. D., Eberhardt, K. R., Parry, B. (1997). Guidelines for expressing the uncertainty of measurement results containing uncorrected bias. Journal of Research of the National Institute of Standards and Technology 102(5), 577–585.10.6028/jres.102.039489458027805145Search in Google Scholar

[15] Lira, I. H., Wöger, W. (1998). Evaluation of the uncertainty associated with a measurement result not corrected for systematic effects. Measurement Science and Technology 9(6), 1010.10.1088/0957-0233/9/6/019Search in Google Scholar

[16] Haesselbarth, W. (2004). Accounting for bias in measurement uncertainty estimation. Accreditation and Quality Assurance 9(8), 509–514.10.1007/s00769-004-0782-5Search in Google Scholar

[17] Synek, V. (2005). Attempts to include uncorrected bias in the measurement uncertainty. Talanta 65(4), 829–837.10.1016/j.talanta.2004.07.03818969876Search in Google Scholar

[18] Magnusson, B., Ellison, S. L. R. (2008). Treatment of uncorrected measurement bias in uncertainty estimation for chemical measurements. Analytical and Bioanalytical Chemistry 390(1), 201–213.10.1007/s00216-007-1693-118026721Search in Google Scholar

[19] Hernla, M. (2008). Messunsicherheit bei nicht korrigierten systematischen Messabweichungen. tm Technisches Messen 75(11), 609–615.10.1524/teme.2008.0739Search in Google Scholar

[20] Physikalisch-Technische Bundesanstalt (2010). Erklärung der PTB zur Behandlung systematischer Abweichungen bei der Berechnung der Messunsicherheit. https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_8/8.4_mathematische_modellierung/8.40/GUM_-_systematische_Abweichungen.pdf.Search in Google Scholar

[21] Joint Committee for Guides in Metrology (2008). Evaluation of measurement data – Supplement 1 to the “Guide to the expression of uncertainty in measurement“ – Propagation of distributions using a Monte Carlo method. JCGM 101:2008.Search in Google Scholar

[22] Robert, C. P. (2007). The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. Springer.Search in Google Scholar

[23] Wöger, W. (2001). Zu den modernen Grundlagen der Datenauswertung in der Metrologie. PTB-Mitteilungen 3, 210–225.Search in Google Scholar

[24] Lira, I. (2002). Evaluating the Measurement Uncertainty: Fundamentals and Practical Guidance. CRC Press.Search in Google Scholar

[25] Wang, C. M., Iyer, H. K. (2010). On multiple-method studies. Metrologia 47(6), 642.10.1088/0026-1394/47/6/002Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo