1. bookVolume 14 (2014): Issue 4 (August 2014)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Open Access

Comparison of Molecular Iodine Spectral Properties at 514.7 and 532 nm Wavelengths

Published Online: 23 Aug 2014
Volume & Issue: Volume 14 (2014) - Issue 4 (August 2014)
Page range: 213 - 218
Received: 27 Aug 2013
Accepted: 25 Jul 2014
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

We present results of investigation and comparison of spectral properties of molecular iodine transitions in the spectral region of 514.7 nm that are suitable for laser frequency stabilization and metrology of length. Eight Doppler-broadened transitions that were not studied in detail before were investigated with the help of frequency doubled Yb-doped fiber laser, and three of the most promising lines were studied in detail with prospect of using them in frequency stabilization of new laser standards. The spectral properties of hyperfine components (linewidths, signal-to-noise ratio) were compared with transitions that are well known and traditionally used for stabilization of frequency doubled Nd:YAG laser at the 532 nm region with the same molecular iodine absorption. The external frequency doubling arrangement with waveguide crystal and the Yb-doped fiber laser is also briefly described together with the observed effect of laser aging.

Keywords

[1] Mironov, A.V., Privalov, V.E., Savelev, S.K. (1997). Complete calculated atlas of the absorption spectrum of iodine-127 (B-X system of bands) and complex of programs for the tabulation of iodine lines. Optics and Spectroscopy, 82 (3), 332-333.Search in Google Scholar

[2] Salami, H., Ross, A.J. (2005). A molecular iodine atlas in ascii format. Journal of Molecular Spectroscopy, 233 (1), 157-159.10.1016/j.jms.2005.06.002Search in Google Scholar

[3] Simmons, J.D., Hougen, J.T. (1977). Atlas of I2 spectrum from 19 000 to 18 000 Cm-1. Journal of Research of the National Bureau of Standards, Section A : Physics and Chemistry, 81 (1), 25-80.10.6028/jres.081A.006Search in Google Scholar

[4] Cheng, W.Y., Chen, L.S., Yoon, T.H., Hall, J.L., Ye, J. (2002). Sub-Doppler molecular-iodine transitions near the dissociation limit (523-498 nm). Optics Letters, 27 (8), 571-573.10.1364/OL.27.000571Search in Google Scholar

[5] Quinn, T.J. (2003). Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia, 40 (2), 103-133.10.1088/0026-1394/40/2/316Search in Google Scholar

[6] Balhorn, R., Lebowsky, F., Kunzmann, H. (1972). Frequency stabilization of internal-mirror helium-neon lasers. Applied Optics, 11 (4), 742-744.10.1364/AO.11.000742Search in Google Scholar

[7] Nevsky, A.Y., Holzwarth, R., Reichert, et al. (2001). Frequency comparison and absolute frequency measurement of I-2-stabilized lasers at 532 nm. Optics Communications, 192 (3-6), 263-272.10.1016/S0030-4018(01)01190-7Search in Google Scholar

[8] Petru, F., Popela, B., Vesela, Z. (1993). Design and performance of compact iodine stabilized He-Ne lasers at lambda=633 nm with a short optical-resonator. Measurement Science & Technology, 4 (4), 506-512.10.1088/0957-0233/4/4/012Search in Google Scholar

[9] Sevcik, R., Guttenova, J. (2007). Primary length standard adjustment. In 15th Czech-Polish-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics, Proc. SPIE 6609.Search in Google Scholar

[10] Galzerano, G., Bava, E., Bisi, M., Bertinetto, F., Svelto, C. (1999). Frequency stabilization of frequency-doubled Nd : YAG lasers at 532 nm by frequency modulation spectroscopy technique. IEEE Transactions on Instrumentation and Measurement, 48 (2), 540-543.10.1109/19.769653Search in Google Scholar

[11] Nyholm, K., Merimaa, M., Ahola, T., Lassila, A. (2003). Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using thirdharmonic technique. IEEE Transactions on Instrumentation and Measurement, 52 (2), 284-287.10.1109/TIM.2003.811679Search in Google Scholar

[12] Bartl, J., Guttenova, J., Jacko, V., Sevcik, R. (2007). Circuits for optical frequency stabilization of metrological lasers. In Measurement 2007 : 6th International Conference on Measurement. Bratislava : Institute of Measurement Science SAS, 131-134.Search in Google Scholar

[13] Hrabina, J., Petru, F., Jedlicka, P., Cip, O., Lazar, J. (2007). Purity of iodine cells and optical frequency shift of iodine-stabilized He-Ne lasers. Optoelectronics and Advanced Materials-Rapid Communications, 1 (5), 202-206.Search in Google Scholar

[14] Ciddor, P.E., Duffy, R.M. (1983). Two-mode frequency-stabilized He-Ne (633 nm) lasers : Studies of short- and long-term stability. Journal of Physics E : Scientific Instruments, 16 (12), 1223-1227.Search in Google Scholar

[15] Rovera, G.D., Ducos, F., Zondy, J.J., Acef, O., Wallerand, J.P., Knight, J.C., Russell, P.S. (2002). Absolute frequency measurement of an I-2 stabilized Nd : YAG optical frequency standard. Measurement Science & Technology, 13 (6), 918-922.10.1088/0957-0233/13/6/313Search in Google Scholar

[16] Lazar, J., Hrabina, J., Jedlicka, P., Cip, O. (2009). Absolute frequency shifts of iodine cells for laser stabilization. Metrologia, 46 (5), 450-456.10.1088/0026-1394/46/5/008Search in Google Scholar

[17] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Frequency noise properties of lasers for interferometry in nanometrology. Sensors, 13 (2), 2206-2219. 10.3390/s130202206364941523435049Search in Google Scholar

[18] Lance, A.L., Seal, W.D., Labaar, F. (1982). Phase noise measurement systems. ISA Transactions, 21 (4), 37-44.Search in Google Scholar

[19] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Investigation of short-term amplitude and frequency fluctuations of lasers for interferometry. Measurement Science Review, 13 (2), 63-69.10.2478/msr-2013-0014Search in Google Scholar

[20] Rerucha, S., Buchta, Z., Sarbort, M., Lazar, J., Cip, O. (2012). Detection of interference phase by digital computation of quadrature signals in homodyne laser interferometry. Sensors, 12 (10), 14095-14112.10.3390/s121014095354560923202038Search in Google Scholar

[21] Smid, R., Cip, O., Lazar, J. (2008). Precise length etalon controlled by stabilized frequency comb. Measurement Science Review, 8 (5), 114-117.Search in Google Scholar

[22] Hodges, J.T., Layer, H.P., Miller, W.W., Scace, G.E. (2004). Frequency-stabilized single-mode cavity ringdown apparatus for high-resolution absorption spectroscopy. Review of Scientific Instruments, 75 (4), 849-863.10.1063/1.1666984Search in Google Scholar

[23] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Refractive index compensation in over-determined interferometric systems. Sensors, 12 (10), 14084-14094.10.3390/s121014084354560823202037Search in Google Scholar

[24] Birch, K.P., Downs, M.J. (1994). Correction to the updated edlen equation for the refractive-index of air. Metrologia, 31 (4), 315-316.10.1088/0026-1394/31/4/006Search in Google Scholar

[25] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Displacement interferometry with stabilization of wavelength in air. Optics Express, 20 (25), 27830-27837.10.1364/OE.20.02783023262728Search in Google Scholar

[26] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2011). Standing wave interferometer with stabilization of wavelength on air. tm-Technisches Messen, 78 (11), 484-488.10.1524/teme.2011.0201Search in Google Scholar

[27] Zhang, J., Lu, Z.H., Menegozzi, B., Wang, L.J. (2006). Application of frequency combs in the measurement of the refractive index of air. Review of Scientific Instruments, 77 (8).10.1063/1.2239036Search in Google Scholar

[28] Hrabina, J., Lazar, J., Klapetek, P., Cip, O. (2011). Multidimensional interferometric tool for the local probe microscopy nanometrology. Measurement Science & Technology, 22 (9).10.1088/0957-0233/22/9/094030Search in Google Scholar

[29] Cao, H.J., Zang, E.J., Zhao, K., Zhang, X.B., Wu, Y.X., Shen, N.C. (1998). Frequency stabilization of a Nd:YAG laser to Doppler-broadened lines of iodine near 532 nm. In Conference on Precision Electromagnetic Measurements Digest, 6-10 July 1998. IEEE, 183-184.10.1117/12.344142Search in Google Scholar

[30] Lazar, J., Hrabina, J., Sery, M., Klapetek, P., Cip, O. (2012). Multiaxis interferometric displacement measurement for local probe microscopy. Central European Journal of Physics, 10 (1), 225-231.10.2478/s11534-011-0093-5Search in Google Scholar

[31] du Burck, F., Daussy, C., Amy-Klein, A., Goncharov, A.N., Lopez, O., Chardonnet, C., Wallerand, J.P. (2005). Frequency measurement of an Ar+ laser stabilized on narrow lines of molecular iodine at 501.7 nm. IEEE Transactions on Instrumentation and Measurement, 54 (2), 754-758.Search in Google Scholar

[32] Wallerand, J.P., Robertsson, L., Ma, L.S., Zucco, M. (2006). Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequencydoubled Yb-doped fibre laser. Metrologia, 43 (3), 294-298.Search in Google Scholar

[33] Osellame, R., Della Valle, G., Chiodo, N., Taccheo, S., Laporta, P., Svelto, O., Cerullo, G. (2008). Lasing in femtosecond laser written optical waveguides. Applied Physics A : Materials Science & Processing, 93 (1), 17-26.10.1007/s00339-008-4644-6Search in Google Scholar

[34] Chiodo, N., Du Burck, F., Hrabina, J., Candela, Y., Wallerand, J.P., Acef, O. (2013). CW frequency doubling of 1029 nm radiation using single pass bulk and waveguide PPLN crystals. Optics Communications, 311, 239-244.10.1016/j.optcom.2013.08.020Search in Google Scholar

[35] Chiodo, N., Du-Burck, F., Hrabina, J., Lours, M., Chea, E., Acef, O. (2014). Optical phase locking of two infrared continuous wave lasers separated by 100 THz. Optics Letters, 39 (10), 2936-2939.10.1364/OL.39.00293624978241Search in Google Scholar

[36] Hrabina, J., Jedlicka, P., Lazar, J. (2008). Methods for measurement and verification of purity of iodine cells for laser frequency stabilization. Measurement Science Review, 8 (5), 118-121.10.2478/v10048-008-0025-8Search in Google Scholar

[37] Fang, H.M., Wang, S.C., Liu, L.C., Cheng, W.Y., Wu, K.Y., Shy, J.T. (2006). Measurement of hyperfine splitting of molecular iodine at 532 nm by doublepassed acousto optic modulator frequency shifter. Japanese Journal of Applied Physics, 45, 2776-2779.10.1143/JJAP.45.2776Search in Google Scholar

[38] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. I. - Theory. Journal de Physique, 42 (7), 937-947.10.1051/jphys:01981004207093700Search in Google Scholar

[39] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. II. - Experiments on natural and hyperfine predissociation. Journal de Physique, 42 (7), 949-959.10.1051/jphys:01981004207093700Search in Google Scholar

[40] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. III. - Experiments on magnetic predissociation. Journal de Physique, 42 (7), 961-978.10.1051/jphys:01981004207093700Search in Google Scholar

[41] Pique, J.P., Bacis, R., Hartmann, F., Sadeghi, N., Churassy, S. (1983). Hyperfine predissociation in the B state of iodine investigated through lifetime measurements of individual hyperfine sublevels. Journal de Physique, 44 (3), 347-351. 10.1051/jphys:01983004403034700Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo