1. bookVolume 13 (2013): Issue 2 (April 2013)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Investigation of Short-term Amplitude and Frequency Fluctuations of Lasers for Interferometry

Published Online: 03 Apr 2013
Volume & Issue: Volume 13 (2013) - Issue 2 (April 2013)
Page range: 63 - 69
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English

One of the limiting factors of accuracy and resolution in laser interferometry is represented by noise properties of the laser powering the interferometer. Amplitude and especially frequency fluctuations of the laser source are crucial in precision distance measurement. Sufficiently high long-term frequency stability of the laser source must be achieved especially in applications in fundamental metrology. Furthermore, the short-term frequency variations are also important primarily for measurements done at high acquisition speeds. This contribution presents practical results of measurements of short-term amplitude and frequency noises of a set of laser sources commonly used in laser interferometry. The influence of the interferometer design and electrical parameters of the detection system are also discussed.

Keywords

[1] Korpelainen, V., Seppa, J., Lassila, A. (2010). Design and characterization of MIKES metrological atomic force microscope. Precision Engineering, 34 (4), 735-744.10.1016/j.precisioneng.2010.04.002Search in Google Scholar

[2] Otsuka, J., Ichikawa, S., Masuda, T., Suzuki, K. (2005). Development of a small ultraprecision positioning device with 5 nm resolution. MeasurementScience and Technology, 16 (11), 2186-2192.10.1088/0957-0233/16/11/008Search in Google Scholar

[3] Dai, G.L., Pohlenz, F., Danzebrink, H.U., Xu, M., Hasche, K., Wilkening, G. (2004). Metrological large range scanning probe microscope. Review ScientificInstruments, 75 (4), 962-969.10.1063/1.1651638Search in Google Scholar

[4] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Sery, M., Klapetek, P. (2010). Interferometer controlled positioning for nanometrology. In Nanocon 2010 : 2ndInternational Conference, 12-14 October 2010, 287-291.Search in Google Scholar

[5] Kim, J.A., Kim, J.W., Park, B.C., Eom, T.B. (2006). Measurement of microscope calibration standards in nanometrology using a metrological atomic force microscope. Measurement Science and Technology, 17 (7), 1792-1800.10.1088/0957-0233/17/7/018Search in Google Scholar

[6] Jäger, G., Gruenwald, R., Manske, E., Hausotte, T., Fuessl, R. (2004). A nanopositioning and nanomeasuring machine: Operation-measured results. Nanotechnology and Precision Engineering, 2, 81-84.Search in Google Scholar

[7] Lazar, J., Hrabina, J., Sery, M., Klapetek, P., Cip, O. (2012). Multiaxis interferometric displacement measurement for local probe microscopy. CentralEuropean Journal of Physics, 10 (1), 225-231.10.2478/s11534-011-0093-5Search in Google Scholar

[8] Hrabina, J., Lazar, J., Klapetek, P., Cip, O. (2011). AFM nanometrology interferometric system with the compensation of angle errors. In Optical MeasurementSystems for Industrial Inspection VII. SPIE, Vol. 8082, art. no. 80823U.10.1117/12.889544Search in Google Scholar

[9] Quinn, T.J. (1994). Mise-en-pratique of the definition of the meter (1992). Metrologia, 30 (5), 523-541.10.1088/0026-1394/30/5/011Search in Google Scholar

[10] Ciddor, P.E., Bruce, C.F. (1981). Long-term stability of a thermally-stabilized He-Ne laser. Metrologia, 17 (1), 17-18.10.1088/0026-1394/17/1/004Search in Google Scholar

[11] Balhorn, R., Lebowsky, F., Kunzmann, H. (1972). Frequency stabilization of internal-mirror helium-neon lasers. Applied Optics, 11 (4), 742.10.1364/AO.11.00074220119037Search in Google Scholar

[12] Ciddor, P.E., Duffy, R.M. (1983). Two-mode frequency stabilized He-Ne (633 nm) lasers: Studies of short-term and long-term stability. Journal of PhysicsE, 16 (12), 1223-1227.Search in Google Scholar

[13] Hrabina, J., Petru, F., Jedlicka, P., Cip, O., Lazar, J. (2007). Purity of iodine cells and optical frequency shift of iodine-stabilized He-Ne lasers. Journal ofOptoelectronics and Advanced Materials, 1 (5), 202-206.Search in Google Scholar

[14] Sevcik, R., Guttenova, J. (2007). Primary length standard adjustment. In Wave and Quantum Aspects ofContemporary Optics : 15th Czech-Polish-SlovakConference, 11-15 September 2007, 66-67.Search in Google Scholar

[15] Bartl, J., Guttenova, J., Jacko, V., Sevcik, R. (2007). Circuits for optical frequency stabilization of metrological lasers. In Measurement 2007 : 6thInternational Conference on Measurement, 20-24 May 2007. IMS SAS, 131-134.Search in Google Scholar

[16] Holzwarth, R., Nevsky, A.Y., Zimmermann, M. et al. (2001). Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer. AppliedPhysics B, 73 (3), 269-271.10.1007/s003400100633Search in Google Scholar

[17] Hrabina, J., Jedlicka, P., Lazar, J. (2008). Methods for measurement and verification of purity of iodine cells for laser frequency stabilization. Measurement ScienceReview, 8 (5), 118-121.10.2478/v10048-008-0025-8Search in Google Scholar

[18] Privalov, V.E., Shemanin, V.G., Voronina, E.I. (2010). Iodine molecules differential absorption cross section lidar studies. Measurement Science Review, 10 (3), 108-110.10.2478/v10048-010-0015-5Search in Google Scholar

[19] Simmons, J.D., Hougen, J.T. (1977). Atlas of I2 spectrum from 19 000 to 18 000 cm-1. Journal ofResearch of the National Bureau of Standards A, 81 (1), 25-80.Search in Google Scholar

[20] Hrabina, J., Lazar, J., Cip, O., Cizek, M. (2010). Laser source for interferometry in nanotechnology. In Waveand Quantum Aspects of Contemporary Optics : 17thSlovak-Czech-Polish Optical Conference, 6-10 September, 2010. SPIE, Vol. 7746, art. no. 77461I.Search in Google Scholar

[21] Cao, H.J., Zang, E.J., Zhao, K., Zhang, X.B., Wu, Y.X., Shen, N.C. (1998). Frequency stabilization of a Nd : YAG laser to Doppler-broadened lines of iodine near 532nm. In Conference on PrecisionElectromagnetic Measurements Digest, 6-10 July 1998. IEEE, 183-184.Search in Google Scholar

[22] Hrabina, J., Lazar, J., Klapetek, P., Cip, O. (2011). Multidimensional interferometric tool for the local probe microscopy nanometrology. MeasurementScience and Technology, 22 (9), art. no. 094030.10.1088/0957-0233/22/9/094030Search in Google Scholar

[23] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Displacement interferometry with stabilization of wavelength in air. Optics Express, 20 (25), 27830-27837.10.1364/OE.20.02783023262728Search in Google Scholar

[24] Edlen, B. (1966). The refractive index of air. Metrologia, 2, 71-80.10.1088/0026-1394/2/2/002Search in Google Scholar

[25] Birch, K.P., Downs, M.J. (1994). Correction to the updated edlen equation for the refractive-index of air. Metrologia, 31 (4), 315-316.10.1088/0026-1394/31/4/006Search in Google Scholar

[26] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Refractive index compensation in over-determined interferometric system. Sensors, 12 (10), 14084-14094.10.3390/s121014084354560823202037Search in Google Scholar

[27] Quoc, T.B., Ishige, M., Ohkubo, Y., Aketagawa, M. (2009). Measurement of air-refractive-index fluctuation from laser frequency shift with uncertainty of order 10(-9). Measurement Science and Technology, 20 (12), art. no. 125302.10.1088/0957-0233/20/12/125302Search in Google Scholar

[28] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2011). Standing wave interferometer with stabilization of wavelength on air. tm - TechnischesMessen, 78 (11), 484-488.10.1524/teme.2011.0201Search in Google Scholar

[29] Zhang, J., Lu, Z.H., Menegozzi, B., Wang, L.J. (2006). Application of frequency combs in the measurement of the refractive index of air. Review ScientificInstruments, 77 (8), art. no. 083104.10.1063/1.2239036Search in Google Scholar

[30] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2011). Suppression of air refractive index variations in high-resolution interferometry. Sensors, 11 (8), 7644-7655.10.3390/s110807644Search in Google Scholar

[31] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2010). Interferometry with direct compensation of fluctuations of refractive index of air. In Wave andQuantum Aspects of Contemporary Optics : 17thSlovak-Czech-Polish Optical Conference, 6-10 September, 2010. SPIE, Vol. 7746, art. no. 77460E.Search in Google Scholar

[32] Nyholm, K., Merimaa, M., Ahola, T., Lassila, A. (2003). Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using thirdharmonic technique. IEEE Transaction onInstrumentation and Measurement, 52 (2), 284-287.10.1109/TIM.2003.811679Search in Google Scholar

[33] Nevsky, A.Y., Holzwarth, R., Reichert, J. et al. (2001). Frequency comparison and absolute frequency measurement of I-2-stabilized lasers at 532 nm. OpticsCommumications, 192 (3-6), 263-272.10.1007/3-540-45395-4_40Search in Google Scholar

[34] Rovera, G.D., Ducos, F., Zondy, J.J., Acef, O., Wallerand, J.P., Knight, J.C., Russell, P.S. (2002). Absolute frequency measurement of an I-2 stabilized Nd:YAG optical frequency standard. MeasurementScience and Technology, 13 (6), 918-922.10.1088/0957-0233/13/6/313Search in Google Scholar

[35] Galzerano, G., Bava, E., Bisi, M., Bertinetto, F., Svelto, C. (1998). Frequency stabilization of frequency-doubled Nd : YAG lasers at 532 nm. In Conference on Precision ElectromagneticMeasurements Digest, 6-10 July 1998. IEEE, 193-194.Search in Google Scholar

[36] Galzerano, G., Bava, E., Bisi, M., Bertinetto, F., Svelto, C. (1999). Frequency stabilization of frequency-doubled Nd : YAG lasers at 532 nm by frequency modulation spectroscopy technique. IEEETransaction on Instrumentation and Measurement, 48 (2), 540-543.10.1109/19.769653Search in Google Scholar

[37] Lazar, J., Hrabina, J., Jedlicka, P., Cip, O. (2009). Absolute frequency shifts of iodine cells for laser stabilization. Metrologia, 46 (5), 450-456.10.1088/0026-1394/46/5/008Search in Google Scholar

[38] Picard, S., Robertsson, L., Ma, L.S., Nyholm, K. et al. (2003). Comparison of 127I2-stabilized frequencydoubled Nd:YAG lasers at the Bureau International des Poids et Mesures. Applied Optics, 42 (6), 1019-1028.Search in Google Scholar

[39] Lance, A.L., Seal, W.D., Labaar, F. (1982). Phase noise measurement systems. ISA Transactions, 21 (4), 37-44.Search in Google Scholar

[40] Badami, V.G., Patterson, S.R. (2000). A frequency domain method for the measurement of nonlinearity in heterodyne interferometry. Precision Engineering, 24 (1), 41-49.10.1016/S0141-6359(99)00026-4Search in Google Scholar

[41] Cip, O., Petru, F. (2000). A scale-linearization method for precise laser interferometry. Measurement Scienceand Technology, 11 (2), 133-141.Search in Google Scholar

[42] Eom, T., Kim, J., Jeong, K. (2001). The dynamic compensation of nonlinearity in a homodyne laser interferometer. Measurement Science and Technology, 12 (10), 1734-1738.10.1088/0957-0233/12/10/318Search in Google Scholar

[43] Rerucha, S., Buchta, Z., Sarbort, M., Lazar, J., Cip, O. (2012). Detection of interference phase by digital computation of quadrature signals in homodyne laser interferometry. Sensors, 12 (10), 14095-14112.10.3390/s121014095354560923202038Search in Google Scholar

[44] Siffalovic, P., Vegso, K., Jergel, M., Majkova, E. et al. (2010). Measurement of nanopatterned surfaces by real and reciprocal space techniques. MeasurementScience Review, 10 (5), 153-156.10.2478/v10048-010-0027-1Search in Google Scholar

[45] Petru, F., Cip, O. (1999). Problems regarding linearity of data of a laser interferometer with a singlefrequency laser. Precision Engineering, 23 (1), 39-50.10.1016/S0141-6359(98)00023-3Search in Google Scholar

[46] Smid, R., Cip, O., Lazar, J. (2008). Precise length etalon controlled by stabilized frequency comb. Measurement Science Review, 8 (5), 114-117.Search in Google Scholar

[47] Meiners-Hagen, K., Schodel, R., Pollinger, F., Abou- Zeid, A. (2009). Multi-wavelength interferometry for length measurements using diode lasers. MeasurementScience Review, 9 (1), 16-26.10.2478/v10048-009-0001-ySearch in Google Scholar

[48] Petru, F., Popela, B., Vesela, Z. (1993). Design and performance of compact iodine stabilized He-Ne lasers at lambda=633 nm with a short optical resonator. Measurement Science and Technology, 4 (4), 506-512.10.1088/0957-0233/4/4/012Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo