Cite

V.V. Mykhailiuk, О.Ya. Faflei, V.О. Melnyk, І.Ya. Zakhara, A.R. Malyshev and H.Ya. Protsiuk, 2022. Modeling of a gas vertical grid separator. Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas. 1(52), pp. 91–100. DOI:10.31471/1993-9965-2022-1(52)-91-100. Search in Google Scholar

L.M. Mil’shtein, Modernization of Oil and Gas Field Separation. Development of New-Generation Separation Units and Apparatuses, LAP Press, Saarbrücken, Germany (2012). Search in Google Scholar

C.S. Liu, 1994. Development and field test of separator in prying loading type gas collecting device. Natural Gas and Petroleum. 1236–40 Search in Google Scholar

V. Vijayan, M. Vivekanandan, R. Venkatesh, et al. 2021. CFD modeling and analysis of a two-phase vapor separator. J Therm Anal Calorim 145, pp. 2719–27261. DOI:10.1007/s10973-020-09825-2 Search in Google Scholar

J. Kou, Z. Li. Numerical Simulation of New Axial Flow Gas-Liquid Separator. Processes. 2022; 10(1):64. DOI:10.3390/pr10010064 Search in Google Scholar

M.M. Liakh, E.V. Yuriev, V.M. Vakaliuk, Ya.V. Solonychnyi. 2008. Matematychna model separatsii hazoridynnoi sumishi v separatori inertsiinoho typu. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. № 1. pp. 67–73. Search in Google Scholar

Ye, Junxiang & Xu, Yanxia & Song, Xingfu & Yu, Jianguo. 2019. Novel conical section design for ultra-fine particles classification by a hydrocyclone. Chemical Engineering Research and Design. 144, pp. 135–149, DOI:10.1016/j.cherd.2019.02.006. Search in Google Scholar

Caie Zhang, & Wei, Dezhou & Cui, Baoyu & Li, Tianshu & Na. Luo, 2017. Effects of curvature radius on separation behaviors of the hydrocyclone with a tangent-circle inlet. Powder Technology. 305, 156–165, DOI:10.1016/j.powtec.2016.10.002. Search in Google Scholar

E. Mahmoud & Zhou, Ling & Shi, Weidong & Chen, Han. 2021. Performance evaluation of standard cyclone separators by using CFD–DEM simulation with realistic bio-particulate matter. Powder Technology. 385, pp. 357–374, DOI:10.1016/j.powtec.2021.03.006. Search in Google Scholar

B. Wiencke. 2011. Fundamental principles for sizing and design of gravity separators forindustrial refrigeration. International Journal of Refrigeration. 34, pp. 2092–2108. DOI:10.1016/j.ijrefrig.2011.06.011. Search in Google Scholar

Chu, Kaiwei, B. Wang, D.L. Xu, Y.X. Chen, Aibing Yu. 2011. CFD-DEM simulation of the gas – solid flow in a cyclone separator. Chemical Engineering Science. 66. pp. 834–847. DOI:10.1016/j.ces.2010.11.026. Search in Google Scholar

K. Pravin, A. Krupan, A. Dewasthale, A. Datar, A.S. Dalkilic, 2021. CFD analysis of cyclone separator used for fine filtration in separation industry. Case Studies in Thermal Engineering. 28. 101384. DOI:10.1016/j.csite.2021.101384. Search in Google Scholar

Chu, Kaiwei, B. Wang, D.L. Xu, Y.X. Chen, Aibing Yu,. 2011. CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chemical Engineering Science. 66. pp. 834–847. DOI:10.1016/j.ces.2010.11.026. Search in Google Scholar

O. Vytyaz, I. Chudyk, V. Mykhailiuk, 2015. Study of the effects of drilling string eccentricity in the borehole on the quality of its cleaning. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining. pp. 591–595. Search in Google Scholar

N.D. Katopodes, Free-Surface Flow: Computational Methods, Oxford, UK: Butterworth-Heinemann, 2019 Search in Google Scholar

V. Dragan, I. Malael, B. Gherman, 2016. A Comparative Analysis Between Optimized and Baseline High Pressure Compressor Stages Using Tridimensional Computational Fluid Dynamics. Engineering, Technology & Applied Science Research, 6(4), pp. 1103–1108. DOI: 10.48084/etasr.696. Search in Google Scholar

V.V, Maistruk R.I. Havryliv A.S.Popil, A.M. Basistyi 2012.Otsinka enerhozatrat pry roboti priamotechiinoho tsyklonu za dopomohoiu prohramnoho paketu FLOW SIMULATION. Vostochno-Evropeyskiy zhurnal peredovyih tehnologiy. 6/8(60). pp. 28–30. Search in Google Scholar

F.P. Lucas and R. Huebner, “Numerical Simulation of Single-Phase andTwo-Phase Flows in Separator Vessels with Inclined Half-Pipe InletDevice Applied in Reciprocating Compressors,” Engineering, Technology & Applied Science Research, vol. 8, no. 3, pp. 2897–2900, Jun. 2018, https://doi.org/10.48084/etasr.1993.Search in Google Scholar

S.C.K. De Schepper, G.J. Heynderickx, and G.B. Marin. 2008. CFD modeling of all gas-liquid and vapor-liquid flow regimes predicted by the Baker chart,” Chemical Engineering Journal. 138. 1. pp. 349–357, DOI: 10.1016/J.CEJ.2007.06.007. Search in Google Scholar

A.P. Laleh, W.Y. Svrcek, and W.D. Monnery. 2012. Design and CFD studies of multiphase separators – a review,” The Canadian Journal of Chemical Engineering. 90. 6. pp. 1547–1561. DOI: 10.1002/CJCE.20665. Search in Google Scholar

G. Cheng, L. Yan, and H. Zhou, 2004. The Oil Vessel Structure Optimization by the use of CFD in the Oil Injection Twin-Screw Compressor,” presented at the International Compressor Engineering Conference, West Lafayette, IN, USA, Art. no. 1714. Search in Google Scholar

Xu. Yanxia, Ye. Junxiang, Xingfu Song, Jianguo Yu. 2022. Classification of Ultrafine Particles Using a Novel 3D-Printed Hydrocyclone with an Arc Inlet: Experiment and CFD Modeling. ACS Omega. 8. DOI:10.1021/acsomega.2c06383. Search in Google Scholar

J.Y. Tian, L. Ni, T. Song, J.N. Zhao. 2020. CFD simulation of hydrocyclone – separation performance influenced by reflux device and different vortex – finder lengths. Sep. Purif. Technol. 233, No. 116013. DOI: 10.1016/j.seppur.2019.116013 Search in Google Scholar