1. bookVolume 30 (2022): Issue 1 (March 2022)
Journal Details
License
Format
Journal
eISSN
2450-5781
First Published
30 Mar 2017
Publication timeframe
4 times per year
Languages
English
access type Open Access

Impact of Reservoir Heterogeneity on the Control of Water Encroachment into Gas-Condensate Reservoirs during CO2 Injection

Published Online: 12 Feb 2022
Volume & Issue: Volume 30 (2022) - Issue 1 (March 2022)
Page range: 62 - 68
Journal Details
License
Format
Journal
eISSN
2450-5781
First Published
30 Mar 2017
Publication timeframe
4 times per year
Languages
English
Abstract

The paper evaluates application of CO2 injection for the control of water encroachment from the aquifer into gascondensate reservoir under active natural water drive. The results of numerical simulations indicated that injection of CO2 at the initial gas-water contact (GWC) level reduces the influx of water into gas-bearing zone and stabilizes the operation of production wells for a longer period. The optimum number of injection wells that leads to the maximum estimated ultimate recovery (EUR) factor was derived based on statistical analysis of the results. The maximum number of injection wells at the moment of CO2 break-through into production wells for homogeneous reservoir is equal to 6.41 (6) and for heterogeneous – 7.74 (8) wells. Study results indicated that with the increase of reservoir heterogeneity, denser injection well pattern is needed for the efficient blockage of aquifer water influx in comparison to homogeneous one with the same conditions. Gas EUR factor for the maximum number of injection wells in homogenous model is equal 64.05% and in heterogeneous – 55.56%. Base depletion case the EURs are 51.72% and 49.44%, respectively. The study results showed the technological efficiency of CO2 injection into the producing reservoir at initial GWC for the reduction of water influx and improvement of ultimate hydrocarbon recovery.

Keywords

[1] V.S. Boyko, R.M. Kondrat, R.S. Yaremiychuk. Dovidnyk z naftohazovoyi spravy, Kyiv: Lviv, 1996, 620 pp. (In Ukrainian). Search in Google Scholar

[2] S.V. Matkivskyy, S.O. Kovalchuk, O.V. Burachok, O.R. Kondrat, L.I. Khaydarova. “Doslidzhennya vplyvu neznachnoho proyavu vodonapirnoyi systemy na dostovirnistʹ materialʹnoho balansu kolektoriv”. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, №2 (75), 2020, pp. 43-51. https://doi.org/10.31471/1993-9973-2020-2(75)-43-51 (In Ukrainian).10.31471/1993-9973-2020-2(75)-43-51 Search in Google Scholar

[3] A. Romi, O. Burachok, M.L. Nistor, C. Spyrou, Y. Seilov, O. Djuraev, S. Matkivskyi, D. Grytsai, O. Goryacheva, R. Soyma. “Advantage of Stochastic Facies Distribution Modeling for History Matching of Multi-stacked Highly-heterogeneous Field of Dnieper-Donetsk Basin”, presented at Fourth EAGE Conference on Petroleum Geostatistics, Florence, Italy, 2019, https://doi.org/10.3997/2214-4609.20190218810.3997/2214-4609.201902188 Search in Google Scholar

[4] S. Matkivskyi, O. Kondrat, O. Burachok. “Investigation of the influence of the carbon dioxide (CO2) injection rate on the activity of the water pressure system during gas condensate fields development”, presented at Global Trends, Challenges and Horizons, Dnipro, Ukraine, 2020. https://doi.org/10.1051/e3sconf/20212300101110.1051/e3sconf/202123001011 Search in Google Scholar

[5] V.S. Boyko, R.V. Boyko, L.M. Keba, O.V. Seminsʹkyy. Obvodnennya hazovykh i naftovykh sverdlovyn. Kyiv: Mizhnarodna ekonomichna fundatsiya, 2006, 791 pp. (In Ukrainian). Search in Google Scholar

[6] R.M. Kondrat, V.M. Doroshenko, O.R. Kondrat. “Osoblyvosti zavershalʹnoyi stadiyi rozrobky rodovyshch nafty i hazu”, Naftohazova enerhetyka, № 1, 2007, pp. 17-21. http://elar.nung.edu.ua/handle/123456789/1303. (In Ukrainian). Search in Google Scholar

[7] R.M. Kondrat. Hazokondensatootdacha plastov. Moscow: Nedra, 1992, 255 pp. (In Russian). Search in Google Scholar

[8] A. Firoozabadi, G. Olsen, V.T. Golf-Racht. “Residual Gas Saturation in Water-Drive Gas Reservoir”, SPE paper 16335 presented at SPE California Regional Meeting, Ventura, California, USA, 1987. https://doi.org/10.2118/16355-MS10.2118/16355-MS Search in Google Scholar

[9] S.N. Zakirov. Razrabotka gazovykh, gazokondensatnykh i neftegazokondensatnykh mestorozhdeniy. Moscow: Struna, 1998, 628 pp. (In Russian). Search in Google Scholar

[10] S. N. Zakirov. Teoriya i proyektirovaniye razrabotki gazovykh i gazokondensatnykh mestorozhdeniy: uchebn. pos. dlya vuzov, Moscow: Nedra, 1980, 334 pp. (In Russian). Search in Google Scholar

[11] R.M. Kondrat and L.I. Khaidarova. “Enhanced gas recovery from depleted gas fields with residual natural gas displacement by nitrogen”, Naukovyy visnyk Natsionalʹnoho hirnychoho universytetu, № 5, 2017, pp. 23-28. http://nbuv.gov.ua/UJRN/Nvngu_2017_5_6 (In Ukrainian). Search in Google Scholar

[12] D.D. Mamora and J.G. Seo. “Enhanced Gas Recovery by Carbon Dioxide Sequestration in Depleted Gas Reservoirs”, SPE paper 77347 presented at SPE Technical Conference and Exhibition, San Antonio, Texas, USA, 2002. https://doi.org/10.2118/77347-MS10.2118/77347-MS Search in Google Scholar

[13] O. Kondrat and S. Matkivskyi. “Research of the influence of the pattern arrangement of injection wells on the gas recovery factor when injecting carbon dioxide into reservoir”. Technology and system of power supply, №5/1 (55), 2020, pp. 12-17. https://doi.org/10.15587/2706-5448.2020.21507410.15587/2706-5448.2020.215074 Search in Google Scholar

[14] A.T. Turta, S.S.K. Sim, A.K. Singhal, B.F. Hawkins. “Enhanced Gas Recovery: Effect of Reservoir Heterogeneity on Gas-Gas Displacement”, Presented at Canadian International Petroleum Conference, Calgary, Alberta, Canada, 2009. https://doi.org/10.2118/2009-02310.2118/2009-023 Search in Google Scholar

[15] J.P. Clancy and R.E. Gilchrist. “Nitrogen injection Applications Emerge in the Rockies”. SPE paper 11848 presented at SPE Rocky Mountain Regional Meeting, Salt Lake City, Utah, USA, 1983. https://doi.org/10.2118/11848-MS10.2118/11848-MS Search in Google Scholar

[16] S.S.K. Sim, A.T. Turta, A.K. Singhal, B.F. Hawkins. “Enhanced Gas Recovery: Factors Affecting Gas-Gas Displacement Efficiency”, presented at 9th Canadian International Petroleum Conference, Calgary, Canada, 2008. https://doi.org/10.2118/2008-14510.2118/2008-145 Search in Google Scholar

[17] M.M. Rafiee, M. Ramazanian. “Simulation Study of Enhanced Gas Recovery Process Using a Compositional and a Black Oil Simulator”. SPE paper 144951 presented at SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 2011. https://doi.org/10.2118/144951-MS10.2118/144951-MS Search in Google Scholar

[18] S.A. Jikich, D.H. Smith, W.N. Sams, G.S. Bromhal. “Enhanced Gas Recovery (EGR) with Carbon Dioxide Sequestration: A Simulation Study of Effects of Injection Strategy and Operational Parameters”. SPE paper 84813 presented at SPE Eastern Regional Meeting, Pittsburgh, Pennsylvania, 2003. https://doi.org/10.2118/84813-MS10.2118/84813-MS Search in Google Scholar

[19] A. Al-Hasami, S. Ren, B. Tohidi. “CO2 Injection for Enhanced Gas Recovery and Geo-Storage: Reservoir Simulation and Economics”. SPE paper 94128 presented at SPE Europec/EAGE Annual Conference, Madrid, Spain, 2005. https://doi.org/10.2118/94129-MS10.2118/94129-MS Search in Google Scholar

[20] С. M. Oldenburg, D. H. Law, Y. L. Gallo, S. P. White. “Mixing of CO2 and CH4 in Gas Reservoirs: Code Comparison Studies”, Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume 1, 2003, pp. 443-448. https://doi.org/10.1016/B978-008044276-1/50071-4.10.1016/B978-008044276-1/50071-4 Search in Google Scholar

[21] A.T. Turta, S.S.K. Sim, A. K. Singhai, B. F. Hawkins “Basic Investigations on Enhanced Recovery by Gas-Gas Displacement”. Journal of Canada Petroleum Technology. Volume 47, Number 10, 2008. https://doi.org/10.2118/08-10-3910.2118/08-10-39 Search in Google Scholar

[22] S. Kryvulya, S. Matkivskyi, O. Kondrat, Ye. Bikman. “Approval of the technology of carbon dioxide injection into the V-16 water driven reservoir of the Hadiach field (Ukraine) under the conditions of the water pressure mode”. Technology and system of power supply. №6/1(56), 2020. pp. 13-18. https://doi.org/10.15587/2706-5448.2020.217780 (In Ukrainian).10.15587/2706-5448.2020.217780 Search in Google Scholar

[23] Ye.M. Bakulin. “Osnovni napryamky rozvytku naftovoyi i hazovoyi promyslovosti Ukrayiny”. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, № 4(25), 2010, pp. 5-13. (In Ukrainian). Search in Google Scholar

[24] R.M. Ter-Sarkisov. Razrabotka i dobycha trudnoizvlekayemykh zapasov uglevodorodov. Moscow: Nedra, 2005, 407 pp. (In Russian). Search in Google Scholar

[25] Q.M. Malik and M.R. Islam. “CO2 Injection in the Weyburn Field of Canada: Optimization of Enhanced Oil Recovery and Greenhouse Gas Storage With Horizontal Wells”, SPE paper 59327 presented at the 2000 SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, 2000. https://doi.org/10.2118/00-09-0110.2118/00-09-01 Search in Google Scholar

[26] S. Doleschall, A. Szittar, G. Udvardi. “Review of the 30 Years’ Experience of the CO2 Imported Oil Recovery Projects in Hungary”. SPE paper 22362 presented at International Meeting on Petroleum Engineering, Beijing, China, 1992. https://doi.org/10.2118/22362-MS10.2118/22362-MS Search in Google Scholar

[27] H. Agustssen and G.H. Grinestaff. “A Study of IOR by CO2 Injection in the Gullfaks Field, Offshore Norway”, SPE paper 89338 presented at SPE/DOE 14th Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA, 2004. https://doi.org/10.2118/89338-MS10.2118/89338-MS Search in Google Scholar

[28] ECLIPSE* Technical Description. Version 2020.1 © Schlumberger, 2020, pp. 1078. *Mark of Schlumberger. Search in Google Scholar

[29] Petrel* Help. Version 2019.2. *Mark of Schlumberger. Search in Google Scholar

[30] O.V. Burachok, D.V. Pershyn, S.V. Matkivskyy, Ye.S. Bikman, O.R. Kondrat. “Osoblyvosti vidtvorennya rivnyannya stanu hazokondensatnykh sumishey za umovy obmezhenoyi vkhidnoyi informatsiyi”, Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, № 1(74), 2020, pp. 82-88. https://doi.org/10.31471/1993-9973-2020-1(74)-82-8810.31471/1993-9973-2020-1(74)-82-88 Search in Google Scholar

[31] C.H. Whitson and M.R. Brule. Phase Behavior, Richardson, Texas, 2000, 240 pp. (SPE Monograph Series, Volume 20).10.2118/9781555630874 Search in Google Scholar

[32] M.A. Myslyuk and Yu.O. Zarubin. Modelyuvannya yavyshch i protsesiv u naftohazopromysloviy spravi: pidruchnyk. Ivano-Frankivsk: Ekor, 1999, 494 pp. (In Ukrainian). Search in Google Scholar

[33] O. Burachok, D. Pershyn, C. Spyrou, G. Turkarslan, M.L. Nistor, D. Grytsai, S. Matkivskyi, Y. Bikman, O. Kondrat. “Gas-Condensate PVT Fluid Modeling Methodology Based on Limited Data”, presented at 82nd EAGE Conference & Exhibition, Amsterdam, The Netherlands, 2020. https://doi.org/10.3997/2214-4609.20201015510.3997/2214-4609.202010155 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo