1. bookVolume 28 (2020): Issue 2 (June 2020)
Journal Details
First Published
30 Mar 2017
Publication timeframe
4 times per year
access type Open Access

Thermodynamic Approach to the Development and Selection of Hardfacing Materials in Energy Industry

Published Online: 26 May 2020
Volume & Issue: Volume 28 (2020) - Issue 2 (June 2020)
Page range: 84 - 89
Received: 01 Jan 2020
Accepted: 01 Mar 2020
Journal Details
First Published
30 Mar 2017
Publication timeframe
4 times per year

The overall study objection is selection and optimization all available thermodynamic data required for using calculation of phase diagram (CALPHAD) technique within the Fe-C-Cr-Mn-Si-Ti system. Such data collected in the thermodynamic database can be used for predicting the phase constitution states of a given composition for Fe-based hardfacing materials, which often use in energy industry in order to increase the abrasion and impact wear resistance of equipment parts. In order to compare theroretical calculation results with experimental data, four different types of hardfacing were deposited using flux-cored arc welding. Microstructure and chemical composition of deposited layers was investigated using optical and scanning electron microscopy together with energy dispersive X-ray spectroscopy. Comparison of experimental and computed results shows that they are in good agreement in meaning of presence of all-important phase equilibrium regions. The developed database can be used for rational selection of hardfacing materials for energy industry equipment and reasonable choice of new alloying systems.


[1] D. L. Lutsak, P. M. Prysyazhnyuk, M. O. Karpash, V. M. Pylypiv, and V. O. Kotsyubynsky, “Formation of Structure and Properties of Composite Coatings TiB2 – TiC – Steel Obtained by Overlapping of Electric-Arc Surfacing and Self-Propagating High-Temperature Synthesis,” Metallofizika i Noveishie Tekhnologii, vol. 38, no. 9, pp. 1265-1278, Dec. 2016. https://doi.org/10.15407/mfint.38.09.1265.10.15407/mfint.38.09.1265Search in Google Scholar

[2] Y. A. Kryl’ and P. M. Prysyazhnyuk, “Structure formation and properties of NbC-Hadfield steel cermets,” Journal of Super-hard Materials, vol. 35, no. 5, pp. 292-297, Sep. 2013. https://doi.org/10.3103/s1063457613050043.10.3103/S1063457613050043Search in Google Scholar

[3] P. Prysyazhnyuk, D. Lutsak, L. Shlapak, V. Aulin, L. Lutsak, L. Borushchak, and T. A. Shihab, “Development of the composite material and coatings based on niobium carbide,” Eastern-European Journal of Enterprise Technologies, vol. 6, no. 12 (96), pp. 43-49, Dec. 2018. https://doi.org/10.15587/1729-4061.2018.150807.10.15587/1729-4061.2018.150807Search in Google Scholar

[4] O. Bulbuk, A. Velychkovych, V. Mazurenko, L. Ropyak, and T. Pryhorovska, “Analytical estimation of tooth strength, restored by direct or indirect restorations,” Engineering Solid Mechanics, pp. 193-204, 2019. https://doi.org/10.5267/j.esm.2019. in Google Scholar

[5] P. M. Prysyazhnyuk, T. A. Shihab, and V. H. Panchuk, “Formation of the Structure of Cr3C2–MNMts 60-20-20 Cer-mets,” Materials Science, vol. 52, no. 2, pp. 188-193, Sep. 2016. https://doi.org/10.1007/s11003-016-9942-0.10.1007/s11003-016-9942-0Search in Google Scholar

[6] B. Hallstedt, A. V. Khvan, B. B. Lindahl, M. Selleby, and S. Liu, “PrecHiMn-4—A thermodynamic database for high-Mn steels,” Calphad, vol. 56, pp. 49-57, Mar. 2017. https://doi.org/10.1016/j.calphad.2016. in Google Scholar

[7] B.-J. Lee, “On the stability of Cr carbides”, Calphad, vol. 16, no. 2, pp. 121-149, Apr. 1992. https://doi.org/10.1016/0364-5916(92)90002-F.10.1016/0364-5916(92)90002-FSearch in Google Scholar

[8] B.-J. Lee, “A thermodynamic evaluation of the Fe-Cr-Mn-C system”, Metallurgical Transactions A, vol. 24, no. 5, pp. 1017–1025, May 1993. https://doi.org/10.1007/bf02657232.10.1007/BF02657232Search in Google Scholar

[9] S. Wang, K. Wang, G. Chen, Z. Li, Z. Qin, X. Lu, and C. Li, “Thermodynamic modeling of Ti-Fe-Cr ternary system,” Calphad, vol. 56, pp. 160-168, Mar. 2017. https://doi.org/10.1016/j.calphad.2016. in Google Scholar

[10] L. Y. Chen, C. H. Li, K. Wang, H. Q. Dong, X. G. Lu, and W. Z. Ding, “Thermodynamic modeling of Ti–Cr–Mn ternary system,” Calphad, vol. 33, no. 4, pp. 658-663, Dec. 2009. https://doi.org/10.1016/j.calphad.2009. in Google Scholar

[11] A. Berche, J. C. Tédenac, and P. Jund, “Ab-initio calculations and CALPHAD description of Cr–Ge–Mn and Cr–Ge–Si,” Calphad, vol. 49, pp. 50-57, Jun. 2015. https://doi.org/10.1016/j.calphad.2015. in Google Scholar

[12] A. Berche, J.-C. Tédenac, and P. Jund, “Thermodynamic description of the Cr-Mn-Si system,” Calphad, vol. 55, pp. 181–188, Dec. 2016. https://doi.org/10.1016/j.calphad.2016. in Google Scholar

[13] A. Berche, E. Ruiz-Théron, J.-C. Tedenac, R.-M. Ayral, F. Rouessac, and P. Jund, “Thermodynamic description of the Mn–Si system: An experimental and theoretical work,” Journal of Alloys and Compounds, vol. 615, pp. 693-702, Dec. 2014. https://doi.org/10.1016/j.jallcom.2014. in Google Scholar

[14] B. Sundman and J. Ågren, “A regular solution model for phases with several components and sublattices, suitable for computer applications,” Journal of Physics and Chemistry of Solids, vol. 42, no. 4, pp. 297-301, Jan. 1981. https://doi.org/10.1016/0022-3697(81)90144-x10.1016/0022-3697(81)90144-XSearch in Google Scholar

[15] A. Dinsdale. “SGTE Data for Pure Elements”, Calphad, vol. 15, pp. 317-425. Oct.–Dec. 1991. https://doi.org/10.1016/0364-5916(91)90030-N.10.1016/0364-5916(91)90030-NSearch in Google Scholar

[16] M. Hillert and M. Jarl, “A model for alloying in ferromagnetic metals,” Calphad, vol. 2, no. 3, pp. 227-238, Jan. 1978. https://doi.org/10.1016/0364-5916(78)90011-1.10.1016/0364-5916(78)90011-1Search in Google Scholar

[17] M. Hillert, “The compound energy formalism,” Journal of Alloys and Compounds, vol. 320, no., pp. 161-176, May 2001. https://doi.org/10.1016/s0925-8388(00)01481-x10.1016/S0925-8388(00)01481-XSearch in Google Scholar

[18] A. V. Khvan, B. Hallstedt, and K. Chang, “Thermodynamic assessment of Cr–Nb–C and Mn–Nb–C systems”, Calphad, vol. 39, pp. 54–61, Dec. 2012. https://doi.org/10.1016/j.calphad.2012. in Google Scholar

[19] P. Gustafson, “A Thermodynamic Evaluation of the Fe-C System”, Metallurgical Transactions A, vol. 14, no. 5, pp. 259-267., 1985. https://doi.org/10.1016/0364-5916(88)90025-910.1016/0364-5916(88)90025-9Search in Google Scholar

[20] B. Hallstedt, D. Djurovic, J. von Appen, R. Dronskowski, A. Dick, F. Körmann, T. Hickel, and J. Neugebauer, “Thermodynamic properties of cementite (Fe3C),” Calphad, vol. 34, no. 1, pp. 129-133, Mar. 2010. https://doi.org/10.1016/j.calphad.2010.01.00410.1016/j.calphad.2010.01.004Search in Google Scholar

[21] W. Huang, “A thermodynamic assessment of the Fe-Mn-C system,” Metallurgical Transactions A, vol. 21, no. 8, pp. 2115-2123, Aug. 1990. https://doi.org/10.1007/bf0264787010.1007/BF02647870Search in Google Scholar

[22] J.-O. Andersson, “A thermodynamic evaluation of the Fe-Mo-C system,” Calphad, vol. 12, no. 1, pp. 9-23, Jan. 1988. https://doi.org/10.1361/10549710277033156910.1361/105497102770331569Search in Google Scholar

[23] D. Djurovic, B. Hallstedt, J. von Appen, and R. Dronskowski, “Thermodynamic assessment of the Fe–Mn–C system,” Calphad, vol. 35, no. 4, pp. 479-491, Dec. 2011. https://doi.org/10.1016/j.calphad.2011. in Google Scholar

[24] W. Huang, “Thermodynamic properties of the Fe-Mn-V-C system,” Metallurgical Transactions A, vol. 22, no. 9, pp. 1911-1920, Sep. 1991. https://doi.org/10.1007/bf0266985910.1007/BF02669859Search in Google Scholar

[25] D. Djurovic, B. Hallstedt, J. von Appen, and R. Dronskowski, “Thermodynamic assessment of the Mn–C system,” Calphad, vol. 34, no. 3, pp. 279–285, Sep. 2010. https://doi.org/10.1016/j.calphad.2010.05.00210.1016/j.calphad.2010.05.002Search in Google Scholar

[26] A. Fernandez Guillermet and W. Huang, “Thermodynamic analysis of stable and metastable carbides in the Mn-V-C system and predicted phase diagram,” International Journal of Thermophysics, vol. 12, no. 6, pp. 1077-1102, Nov. 1991. https://doi.org/10.1007/bf0050352010.1007/BF00503520Search in Google Scholar

[27] J. Gröbner, H. L. Lukas, and F. Aldinger, “Thermodynamic calculation of the ternary system Al-Si-C,” Calphad, vol. 20, no. 2, pp. 247-254, Jun. 1996. https://doi.org/10.1016/s0364-5916(96)00027-2.10.1016/S0364-5916(96)00027-2Search in Google Scholar

[28] J. Lacaze and B. Sundman, “An assessment of the Fe-C-Si system,” Metallurgical Transactions A, vol. 22, no. 10, pp. 2211-2223, Oct. 1991. https://doi.org/10.1007/bf0266498710.1007/BF02664987Search in Google Scholar

[29] Y. Du, J. C. Schuster, and L. Perring, “Experimental Investigation and Thermodynamic Description of the Constitution of the Ternary System Cr-Si-C,” Journal of the American Ceramic Society, vol. 83, no. 8, pp. 2067-2073, Dec. 2004. https://doi.org/10.1111/j.1151-2916.2000.tb01513.x10.1111/j.1151-2916.2000.tb01513.xSearch in Google Scholar

[30] L F.S. Dumitrescu, M. Hillert and B. Sundmann, “A reassessment of Ti-C-N based on a critical review of available assessments of Ti-N and Ti-C,” Zeitschrift fuer Metallkunde, vol. 90, no. 7, pp. 534-541, Jul. 1999. https://doi.org/10.1034/j.1600-0692.2002.310105.x10.1034/j.1600-0692.2002.310105.xSearch in Google Scholar

[31] H. Chen, Y. Du, and J. C. Schuster, “On the melting of Cr5Si3 and update of the thermodynamic description of Cr–Si,” Calphad, vol. 33, no. 1, pp. 211-214, Mar. 2009. https://doi.org/10.1016/j.calphad.2008.05.00510.1016/j.calphad.2008.05.005Search in Google Scholar

[32] Y. Du and J. C. Schuster, “Experimental investigation and thermodynamic description of the Cr-Si-Ti system,” Scandinavian Journal of Metallurgy, vol. 31, no. 1, pp. 25-33, Feb. 2002. https://doi.org/10.1034/j.1600-0692.2002.310105.x10.1034/j.1600-0692.2002.310105.xSearch in Google Scholar

[33] W. Huang, “An assessment of the Fe-Mn system,” Calphad, vol. 13, no. 3, pp. 243-252, Jul. 1989. https://doi.org/10.1016/0364-5916(89)90004-710.1016/0364-5916(89)90004-7Search in Google Scholar

[34] S. Cui and I.-H. Jung, “Critical reassessment of the Fe-Si system,” Calphad, vol. 56, pp. 108-125, Mar. 2017. https://doi.org/10.1016/j.calphad.2016.11.00310.1016/j.calphad.2016.11.003Search in Google Scholar

[35] A. Forsberg and J. Agren, “Thermodynamics, Phase Equilibria and Martensitic Transformation in Fe-Mn-Si Alloys,” MRS Proceedings, vol. 246, 1991.https://doi.org/10.1557/proc-246-289.10.1557/PROC-246-289Search in Google Scholar

[36] M. Lindholm, “A thermodynamic description of the Fe-Cr-Si system with emphasis on the equilibria of the sigma (Σ) phase,” Journal of Phase Equilibria, vol. 18, no. 5, pp. 432-440, Sep. 1997. https://doi.org/10.1007/bf02647699.10.1007/BF02647699Search in Google Scholar

[37] L. F. S. Dumitrescu, M. Hillert, and N. Sounders, “Comparison of Fe-Ti assessments,” Journal of Phase Equilibria, vol. 19, no. 5, pp. 441-448, Oct. 1998. https://doi.org/10.1361/105497198770341923.10.1361/105497198770341923Search in Google Scholar

[38] “COST507 database for light alloys. Internet: http://www.opencalphad.com/, [Feb. 01, 2020].Search in Google Scholar

[39] H. J. Seifert, H. L. Lukas, and G. Petzow, “Thermodynamic optimization of the Ti-Si system,” Zeitschrift fuer Metallkunde, vol. 87, no. 1, pp. 2-13, Jan. 1996.10.1515/ijmr-1996-870102Search in Google Scholar

[40] M. Hillert and C. Qiu, “A reassessment of the Fe-Cr-Mo-C system,” Journal of Phase Equilibria, vol. 13, no. 5, pp. 512-521, Oct. 1992. https://doi.org/10.1007/bf02665764.10.1007/BF02665764Search in Google Scholar

[41] J. C. Schuster and Y. Du, “Thermodynamic description of the system Ti-Cr-C,” Calphad, vol. 23, no. 3-4, pp. 393-408, Sep. 1999. https://doi.org/10.1016/s0364-5916(00)00009-2.10.1016/S0364-5916(00)00009-2Search in Google Scholar

[42] J. Miettinen, “Reassessed thermodynamic solution phase data for ternary Fe-Si-C system”, Calphad, vol. 22, no. 2, pp. 231-256, Jun. 1998. https://doi.org/10.1016/s0364-5916(98)00026-110.1016/S0364-5916(98)00026-1Search in Google Scholar

[43] L. F. S. Dumitrescu and M. Hillert, “Reassessment of the Solubility of TiC and TiN in Fe.,” ISIJ International, vol. 39, no. 1, pp. 84-90, 1999. https://doi.org/10.2355/isijinternational.39.8410.2355/isijinternational.39.84Search in Google Scholar

[44] B.-J. Lee, “Thermodynamic assessment of the Fe-Nb-Ti-C-N system,” Metallurgical and Materials Transactions A, vol. 32, no. 10, no. pp. 2423-2439, Oct. 2001. https://doi.org/10.1007/s11661-001-0033-x10.1007/s11661-001-0033-xSearch in Google Scholar

[45] Y. Du, J. C. Schuster, H. J. Seifert, and F. Aldinger, “Experimental Investigation and Thermodynamic Calculation of the Titanium Silicon Carbon System,” Journal of the American Ceramic Society, vol. 83, no. 1, pp. 197-203, Jan. 2000. https://doi.org/10.1111/j.1151-2916.2000.tb01170.x10.1111/j.1151-2916.2000.tb01170.xSearch in Google Scholar

[46] J. Miettinen, “Thermodynamic description of solution phases of systems Fe-Cr-Si and Fe-Ni-Si with low silicon contents and with application to stainless steels,” Calphad, vol. 23, 2, pp. 249-262, Jun. 1999. https://doi.org/10.1016/s0364-5916(99)00028-010.1016/S0364-5916(99)00028-0Search in Google Scholar

[47] S. Cui and I.-H. Jung, “Thermodynamic Assessments of the Fe-Si-Cr and Fe-Si-Mg Systems,” Metallurgical and Materials Transactions A, vol. 48, no. 9, pp. 4342-4355, Jun. 2017. https://doi.org/10.1007/s11661-017-4163-110.1007/s11661-017-4163-1Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo