This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ozgun, O., Aslantas, K., Ercetin, A., Powder metallurgy Mg-Sn alloys: Production and characterization, Sci. Iran., 2020, 27(3): 1255–1265. 10.24200/sci.2019.50212.1578OzgunO.AslantasK.ErcetinA.Powder metallurgy Mg-Sn alloys: Production and characterizationSci. Iran.20202731255126510.24200/sci.2019.50212.1578Open DOI
Akkoyun, F., Cevik, Z.A., Ozsoy, K., Ercetin, A., Arpaci, I., Image processing approach to investigate the correlation between machining parameters and burr formation in micro-milling processes of selective-laser-melted AISI 316L, Micromachines, 2023, 14(7): 1376. 10.3390/mi14071376AkkoyunF.CevikZ.A.OzsoyK.ErcetinA.ArpaciI.Image processing approach to investigate the correlation between machining parameters and burr formation in micro-milling processes of selective-laser-melted AISI 316LMicromachines2023147137610.3390/mi14071376Open DOI
El-Eskandarany, M.S., Al-Hazza, A., Al-Hajji, L.A., Mechanically assisted Solid-State mixing and Spark plasma sintering for fabrication of bulk nanocomposite (WC/7(10Co/4cr))-Based ZrO2 systems, J. Mater. Eng. Perform., 2018, 26(4): 1540–1550. 10.1007/s11665-017-2580-3El-EskandaranyM.S.Al-HazzaA.Al-HajjiL.A.Mechanically assisted Solid-State mixing and Spark plasma sintering for fabrication of bulk nanocomposite (WC/7(10Co/4cr))-Based ZrO2 systemsJ. Mater. Eng. Perform.20182641540155010.1007/s11665-017-2580-3Open DOI
Munir, Z.A., Quach, D.V., Ohyanagi, M., Electric current activation of sintering: a review of the pulsed electric current sintering process, J. Am. Ceram. Soc., 2011, 94(1): 1–19MunirZ.A.QuachD.V.OhyanagiM.Electric current activation of sintering: a review of the pulsed electric current sintering processJ. Am. Ceram. Soc.2011941119Search in Google Scholar
Acchar, W., Camara, C.R.F.D., Cairo, C.A.A., Filgueira, M., Mechanical performance of alumina reinforced with NbC, TiC and WC, Mater. Res., 2012, 15: 821–824AccharW.CamaraC.R.F.D.CairoC.A.A.FilgueiraM.Mechanical performance of alumina reinforced with NbC, TiC and WCMater. Res.201215821824Search in Google Scholar
Ercetin, A., Özgün, Ö., Aslantaş, K., Der, O., Yalçın, B., Şimşir, E., et al., Microstructural and mechanical behavior investigations of NB-Reinforced MG–SN–AL–ZN–MN matrix magnesium composites, Metals, 2023, 13(6): 1097. 10.3390/met13061097ErcetinA.ÖzgünÖ.AslantaşK.DerO.YalçınB.ŞimşirE.Microstructural and mechanical behavior investigations of NB-Reinforced MG–SN–AL–ZN–MN matrix magnesium compositesMetals2023136109710.3390/met13061097Open DOI
Ogunbiyi, O., Jamiru, T., Sadiku, R., Adesina, O., Olajide, J.L., Beneke, L., Optimization of spark plasma sintering parameters of inconel 738LC alloy using response surface methodology (RSM), Int. J. Lightweight Mater. Manuf., 2020, 3(2): 177–188. 10.1016/j.ijlmm.2019.10.002OgunbiyiO.JamiruT.SadikuR.AdesinaO.OlajideJ.L.BenekeL.Optimization of spark plasma sintering parameters of inconel 738LC alloy using response surface methodology (RSM)Int. J. Lightweight Mater. Manuf.20203217718810.1016/j.ijlmm.2019.10.002Open DOI
Pakseresht, A., Javadi, A., Bahrami, M., Khodabakhshi, F., Simchi, A., Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: Microstructural development and hot corrosion behavior, Ceram. Int., 2016, 42(2): 2770–2779. 10.1016/j.ceramint.2015.11.008PaksereshtA.JavadiA.BahramiM.KhodabakhshiF.SimchiA.Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: Microstructural development and hot corrosion behaviorCeram. Int.20164222770277910.1016/j.ceramint.2015.11.008Open DOI
Yan, S., Wang, Y., Wang, Q., Zhang, C., Chen, D., Cui, G., Enhancing mechanical properties of the Spark plasma sintered Inconel 718 alloy by controlling the Nano-Scale precipitations, Materials, 2019, 12(20): 3336. 10.3390/ma12203336YanS.WangY.WangQ.ZhangC.ChenD.CuiG.Enhancing mechanical properties of the Spark plasma sintered Inconel 718 alloy by controlling the Nano-Scale precipitationsMaterials20191220333610.3390/ma12203336Open DOI
Rutkowski, P., Huebner, J., Graboś, A., Kata, D., Pasiut, K., Handke, B., et al., Thermal properties of spark plasma sintered Inconel 625 modified by titanium zirconium mixed carbide, J. Therm. Anal. Calorim., 2023, 148(15): 7633–7652. 10.1007/s10973-023-12259-1RutkowskiP.HuebnerJ.GrabośA.KataD.PasiutK.HandkeB.Thermal properties of spark plasma sintered Inconel 625 modified by titanium zirconium mixed carbideJ. Therm. Anal. Calorim.2023148157633765210.1007/s10973-023-12259-1Open DOI
Zhou, S., Xu, T., Hu, C., Wu, H., Liu, H., Ma, X., A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding, Opt. Laser Technol., 2021, 140: 106967. 10.1016/j.optlastec.2021.106967ZhouS.XuT.HuC.WuH.LiuH.MaX.A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser claddingOpt. Laser Technol.202114010696710.1016/j.optlastec.2021.106967Open DOI
Graboś, A., Huebner, J., Rutkowski, P., Zhang, S., Kuo, Y., Kata, D., et al., Microstructure and hardness of spark plasma sintered inconel 625-NBC composites for High-Temperature applications, Materials, 2021, 14(16): 4606. 10.3390/ma14164606GrabośA.HuebnerJ.RutkowskiP.ZhangS.KuoY.KataD.Microstructure and hardness of spark plasma sintered inconel 625-NBC composites for High-Temperature applicationsMaterials20211416460610.3390/ma14164606Open DOI
Murakami, T., Korenaga, A., Ohana, T., Microstructure, mechanical properties, oxidation behaviors, and cutting performance of TiC0·5N0.5-X (X: W, Mo) cermet specimens prepared by spark plasma sintering, Ceram. Int., 2021, 47(2): 1986–1999. 10.1016/j.ceramint.2020.09.030MurakamiT.KorenagaA.OhanaT.Microstructure, mechanical properties, oxidation behaviors, and cutting performance of TiC0·5N0.5-X (X: W, Mo) cermet specimens prepared by spark plasma sinteringCeram. Int.20214721986199910.1016/j.ceramint.2020.09.030Open DOI
Zhang, Z., Han, B., Huang, J., Han, Y., Zhou, Y., Kakegawa, K., et al., Mechanical behavior of cryomilledni superalloy by spark plasma sintering, Metall. Mater. Trans. A, 2009, 40(9): 2023–2029. 10.1007/s11661-009-9914-1ZhangZ.HanB.HuangJ.HanY.ZhouY.KakegawaK.Mechanical behavior of cryomilledni superalloy by spark plasma sinteringMetall. Mater. Trans. A20094092023202910.1007/s11661-009-9914-1Open DOI
Diouf, S., Molinari, A., Densification mechanisms in spark plasma sintering: Effect of particle size and pressure, Powder Technol., 2012, 221: 220–227. 10.1016/j.powtec.2012.01.005DioufS.MolinariA.Densification mechanisms in spark plasma sintering: Effect of particle size and pressurePowder Technol.201222122022710.1016/j.powtec.2012.01.005Open DOI
Sharma, D., Kumar, V., Singh, S., Parametric study of the spark plasma sintering process on the mechanical properties of multi-layer graphene reinforced Ti6Al4V nanocomposites, Trans. Indian Inst. Met., 2023, 76(4): 1015–1025. 10.1007/s12666-022-02811-2SharmaD.KumarV.SinghS.Parametric study of the spark plasma sintering process on the mechanical properties of multi-layer graphene reinforced Ti6Al4V nanocompositesTrans. Indian Inst. Met.20237641015102510.1007/s12666-022-02811-2Open DOI
Shongwe, M.B., Diouf, S., Durowoju, M.O., Olubambi, P.A., Effect of sintering temperature on the microstructure and mechanical properties of Fe–30% Ni alloys produced by spark plasma sintering, J. Alloy. Compd., 2015, 649: 824–832. 10.1016/j.jallcom.2015.07.223ShongweM.B.DioufS.DurowojuM.O.OlubambiP.A.Effect of sintering temperature on the microstructure and mechanical properties of Fe–30% Ni alloys produced by spark plasma sinteringJ. Alloy. Compd.201564982483210.1016/j.jallcom.2015.07.223Open DOI
Li, X., Yang, C., Chen, W., Qu, S., Li, Y., Microstructure and mechanical properties of SPSed (Spark Plasma Sintered) Ti66Nb13Cu8Ni6.8Al6.2 bulk alloys with and without WC addition, Mater. Trans., 2009, 50(7): 1720–1724. 10.2320/matertrans.mf200924LiX.YangC.ChenW.QuS.LiY.Microstructure and mechanical properties of SPSed (Spark Plasma Sintered) Ti66Nb13Cu8Ni6.8Al6.2 bulk alloys with and without WC additionMater. Trans.20095071720172410.2320/matertrans.mf200924Open DOI
Sunil, B.R., Ganapathy, C., Kumar, T.S., Chakkingal, U., Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implants, J. Mech. Behav. Biomed. Mater., 2014, 40: 178–189. 10.1016/j.jmbbm.2014.08.016SunilB.R.GanapathyC.KumarT.S.ChakkingalU.Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implantsJ. Mech. Behav. Biomed. Mater.20144017818910.1016/j.jmbbm.2014.08.016Open DOI
Yuan, X., Qiu, H., Zeng, F., Luo, W., Li, H., Wang, X., et al., Microstructural evolution and mechanical properties of Inconel 625 superalloy fabricated by pulsed microplasma rapid additive manufacturing, J. Manuf. Process., 2022, 77: 63–74. 10.1016/j.jmapro.2022.03.008YuanX.QiuH.ZengF.LuoW.LiH.WangX.Microstructural evolution and mechanical properties of Inconel 625 superalloy fabricated by pulsed microplasma rapid additive manufacturingJ. Manuf. Process.202277637410.1016/j.jmapro.2022.03.008Open DOI
Ogunbiyi, O., Jamiru, T., Sadiku, R., Adesina, O., Adesina, O.S., Obadele, B.A., Spark plasma sintering of graphene-reinforced Inconel 738LC alloy: wear and corrosion performance, Met. Mater. Int., 2022, 28(3): 695–709. 10.1007/s12540-020-00871-xOgunbiyiO.JamiruT.SadikuR.AdesinaO.AdesinaO.S.ObadeleB.A.Spark plasma sintering of graphene-reinforced Inconel 738LC alloy: wear and corrosion performanceMet. Mater. Int.202228369570910.1007/s12540-020-00871-xOpen DOI
Bhattacharya, R., Annasamy, M., Cizek, P., Kamaraj, M., Muralikrishna, G.M., Hodgson, P., et al., Evolution of phase constitution with mechanical alloying and spark plasma sintering of nanocrystalline AlxCoCrFeNi (x = 0, 0.3, 0.6, 1 mol) high-entropy alloys, J. Mater. Res., 2022, 37: 959–975. 10.1557/s43578-021-00483-0BhattacharyaR.AnnasamyM.CizekP.KamarajM.MuralikrishnaG.M.HodgsonP.Evolution of phase constitution with mechanical alloying and spark plasma sintering of nanocrystalline AlxCoCrFeNi (x = 0, 0.3, 0.6, 1 mol) high-entropy alloysJ. Mater. Res.20223795997510.1557/s43578-021-00483-0Open DOI
Narayana, P., Kim, S., Hong, J., Reddy, N., Yeom, J., Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650°C, Mater. Sci. Eng. A, 2018, 718: 287–291. 10.1016/j.msea.2018.01.113NarayanaP.KimS.HongJ.ReddyN.YeomJ.Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650°CMater. Sci. Eng. A201871828729110.1016/j.msea.2018.01.113Open DOI
Tingaud, D., Jenei, P., Krawczynska, A., Mompiou, F., Gubicza, J., Dirras, G., Investigation of deformation micro-mechanisms in nickel consolidated from a bimodal powder by spark plasma sintering, Mater. Charact., 2015, 99: 118–127. 10.1016/j.matchar.2014.11.025TingaudD.JeneiP.KrawczynskaA.MompiouF.GubiczaJ.DirrasG.Investigation of deformation micro-mechanisms in nickel consolidated from a bimodal powder by spark plasma sinteringMater. Charact.20159911812710.1016/j.matchar.2014.11.025Open DOI
Oketola, A., Jamiru, T., Adegbola, A.T., Ogunbiyi, O., Rominiyi, A.L., Smith, S., Spark plasma sintering of ceramic-reinforced binary/ternary nickel and titanium metal matrix composites: Mechanical properties, microstructure, and densification – A review, J. Alloy. Metall. Syst., 2023, 3: 100031. 10.1016/j.jalmes.2023.100031OketolaA.JamiruT.AdegbolaA.T.OgunbiyiO.RominiyiA.L.SmithS.Spark plasma sintering of ceramic-reinforced binary/ternary nickel and titanium metal matrix composites: Mechanical properties, microstructure, and densification – A reviewJ. Alloy. Metall. Syst.2023310003110.1016/j.jalmes.2023.100031Open DOI
Chan, K.S., A grain boundary fracture model for predicting dynamic embrittlement and oxidation-induced cracking in superalloys, Metall. Mater. Trans. A, 2015, 46: 2491–2505ChanK.S.A grain boundary fracture model for predicting dynamic embrittlement and oxidation-induced cracking in superalloysMetall. Mater. Trans. A20154624912505Search in Google Scholar
Rajkumar, V., Vishnukumar, M., Sowrirajan, M., Kannan, A.R., Microstructure, mechanical properties and corrosion behaviour of Incoloy 825 manufactured using wire arc additive manufacturing, Vacuum, 2022, 203: 111324. 10.1016/j.vacuum.2022.111324RajkumarV.VishnukumarM.SowrirajanM.KannanA.R.Microstructure, mechanical properties and corrosion behaviour of Incoloy 825 manufactured using wire arc additive manufacturingVacuum202220311132410.1016/j.vacuum.2022.111324Open DOI
Al-Saadi, M., Sandberg, F., Jönsson, P.G., Hulme-Smith, C.N., Modelling of strengthening mechanisms in wrought Nickel-Based 825 alloy subjected to solution annealing, Metals, 2021, 11(5): 771. 10.3390/met11050771Al-SaadiM.SandbergF.JönssonP.G.Hulme-SmithC.N.Modelling of strengthening mechanisms in wrought Nickel-Based 825 alloy subjected to solution annealingMetals202111577110.3390/met11050771Open DOI
Lu, H., Yang, C., Li, X., Cheng, Q., Ma, H., Wang, Z., et al., Microstructure evolution and superelasticity of Ti-24Nb-xZr alloys fabricated by spark plasma sintering, J. Alloy. Compd., 2020, 823: 153875. 10.1016/j.jallcom.2020.153875LuH.YangC.LiX.ChengQ.MaH.WangZ.Microstructure evolution and superelasticity of Ti-24Nb-xZr alloys fabricated by spark plasma sinteringJ. Alloy. Compd.202082315387510.1016/j.jallcom.2020.153875Open DOI
Rominiyi, A.L., Shongwe, M.B., Ogunmuyiwa, E.N., Babalola, B.J., Lepele, P.F., Olubambi, P.A., Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titanium, Mater. Chem. Phys., 2020, 240: 122130. 10.1016/j.matchemphys.2019.122130RominiyiA.L.ShongweM.B.OgunmuyiwaE.N.BabalolaB.J.LepeleP.F.OlubambiP.A.Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titaniumMater. Chem. Phys.202024012213010.1016/j.matchemphys.2019.122130Open DOI