This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Júnior EML, et al. Nile tilapia fish skin–based wound dressing improves pain and treatment-related costs of superficial partial-thickness burns: a phase III randomized controlled trial. Plast Reconstr Surg. 2021;147(5):1189–1198. doi: 10.1097/PRS.0000000000007895JúniorEMLNile tilapia fish skin–based wound dressing improves pain and treatment-related costs of superficial partial-thickness burns: a phase III randomized controlled trial. Plast Reconstr Surg. 2021;147(5):1189–1198. doi: 10.1097/PRS.0000000000007895Open DOISearch in Google Scholar
Schiefer JL, et al. Comparison of wound healing and patient comfort in partial-thickness burn wounds treated with SUPRATHEL and epictehydro wound dressings. Int Wound J. 2022;19(4):782–790. doi: 10.1111/iwj.13674SchieferJLComparison of wound healing and patient comfort in partial-thickness burn wounds treated with SUPRATHEL and epictehydro wound dressings. Int Wound J. 2022;19(4):782–790. doi: 10.1111/iwj.13674Open DOISearch in Google Scholar
Stamenkovic DM, et al. Updates on wound infiltration use for postoperative pain management: a narrative review. J Clin Med. 2021;10(20):4659. doi: 10.3390/jcm10204659StamenkovicDMUpdates on wound infiltration use for postoperative pain management: a narrative review. J Clin Med. 2021;10(20):4659. doi: 10.3390/jcm10204659Open DOISearch in Google Scholar
Small C, Laycock H. Acute postoperative pain management. Br J Surg. 2020;107(2). doi: 10.1002/bjs.11477SmallCLaycockH.Acute postoperative pain management. Br J Surg. 2020;107(2). doi: 10.1002/bjs.11477Open DOISearch in Google Scholar
Macintyre PE, Schug SA. Acute pain management: a practical guide. CRC Press; 2021. doi: 10.1201/9780429295058MacintyrePESchugSA.Acute pain management: a practical guide. CRC Press; 2021. doi: 10.1201/9780429295058Open DOISearch in Google Scholar
Kowalski G, et al. Analgesic efficacy of sufentanil in dressings after surgical treatment of burn wounds. Burns. 2021;47(4):880–887. doi: 10.1016/j.burns.2020.10.006KowalskiGAnalgesic efficacy of sufentanil in dressings after surgical treatment of burn wounds. Burns. 2021;47(4):880–887. doi: 10.1016/j.burns.2020.10.006Open DOISearch in Google Scholar
Wu Y, et al. Measures and effects of pain management for wound dressing change in outpatient children in Western China. J Pain Res. 2021:399–406.WuYMeasures and effects of pain management for wound dressing change in outpatient children in Western China. J Pain Res. 2021:399–406.Search in Google Scholar
Froutan R, et al. The effect of inhalation aromatherapy on sedation level, analgesic dosage, and bispectral index values during donor site dressing in patients with burns: a randomized clinical trial. Adv Skin Wound Care. 2022;35(1):1–9. doi: 10.1097/01.ASW.0000801544.79621.24FroutanRThe effect of inhalation aromatherapy on sedation level, analgesic dosage, and bispectral index values during donor site dressing in patients with burns: a randomized clinical trial. Adv Skin Wound Care. 2022;35(1):1–9. doi: 10.1097/01.ASW.0000801544.79621.24Open DOISearch in Google Scholar
Ghomi ER, et al. Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Curr Opin Biomed Eng. 2022;22:100393. doi: 10.1016/j.cobme.20 22.100393GhomiERAdvances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Curr Opin Biomed Eng. 2022;22:100393. doi: 10.1016/j.cobme.20 22.100393Open DOISearch in Google Scholar
Liu Y, et al. Recent development of electrospun wound dressing. Curr Opin Biomed Eng. 2021;17:100247. doi: 10.1016/j.cobme.2020.100247LiuYRecent development of electrospun wound dressing. Curr Opin Biomed Eng. 2021;17:100247. doi: 10.1016/j.cobme.2020.100247Open DOISearch in Google Scholar
Bombin ADJ, Dunne NJ, McCarthy HO. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater Sci Eng C Mater Biol Appl. 2020;114:110994. doi: 10.1016/j.msec.2020.110994BombinADJDunneNJMcCarthyHO.Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater Sci Eng C Mater Biol Appl. 2020;114:110994. doi: 10.1016/j.msec.2020.110994Open DOISearch in Google Scholar
Gao C, et al. Electrospun nanofibers promote wound healing: theories, techniques, and perspectives. J Mater Chem B. 2021;9(14):3106–3130. doi: 10.1039/D1TB00 067EGaoCElectrospun nanofibers promote wound healing: theories, techniques, and perspectives. J Mater Chem B. 2021;9(14):3106–3130. doi: 10.1039/D1TB00 067EOpen DOISearch in Google Scholar
El Fawal G, et al. Fabrication of scaffold based on gelatin and polycaprolactone (PCL) for wound dressing application. J Drug Deliv Sci Technol. 2021;63:102501. doi: 10.1016/j.jddst.2021.102501El FawalGFabrication of scaffold based on gelatin and polycaprolactone (PCL) for wound dressing application. J Drug Deliv Sci Technol. 2021;63:102501. doi: 10.1016/j.jddst.2021.102501Open DOISearch in Google Scholar
Afzal A, et al. Development and characterization of drug loaded PVA/PCL fibres for wound dressing applications. Polymers (Basel). 2023;15(6):1355. doi: 10.3390/poly m15061355AfzalADevelopment and characterization of drug loaded PVA/PCL fibres for wound dressing applications. Polymers (Basel). 2023;15(6):1355. doi: 10.3390/poly m15061355Open DOISearch in Google Scholar
Mouro C, Simões M, Gouveia IC. Emulsion electrospun fiber mats of PCL/PVA/chitosan and eugenol for wound dressing applications. Adv Polym Technol. 2019;2019:1–11. doi: 10.1155/2019/9859506MouroCSimõesMGouveiaIC.Emulsion electrospun fiber mats of PCL/PVA/chitosan and eugenol for wound dressing applications. Adv Polym Technol. 2019;2019:1–11. doi: 10.1155/2019/9859506Open DOISearch in Google Scholar
Nedeljkovic SS, et al. Transversus abdominis plane block with liposomal bupivacaine for pain after cesarean delivery in a multicenter, randomized, double-blind, controlled trial. Anesth Analg. 2020;131(6):1830. doi: 10.1213/ANE.0000000000005075NedeljkovicSSTransversus abdominis plane block with liposomal bupivacaine for pain after cesarean delivery in a multicenter, randomized, double-blind, controlled trial. Anesth Analg. 2020;131(6):1830. doi: 10.1213/ANE.0000000000005075Open DOISearch in Google Scholar
Grindy SC, et al. Delivery of bupivacaine from UHMWPE and its implications for managing pain after joint arthroplasty. Acta Biomater. 2019;93:63–73. doi: 10.1016/j.actbio.2019.05.049GrindySCDelivery of bupivacaine from UHMWPE and its implications for managing pain after joint arthroplasty. Acta Biomater. 2019;93:63–73. doi: 10.1016/j.actbio.2019.05.049Open DOISearch in Google Scholar
Chahar P, Cummings KC III. Liposomal bupivacaine: a review of a new bupivacaine formulation. J Pain Res. 2012:257–264. doi: 10.2147/JPR.S27894ChaharPCummingsKCIII.Liposomal bupivacaine: a review of a new bupivacaine formulation. J Pain Res. 2012:257–264. doi: 10.2147/JPR.S27894Open DOISearch in Google Scholar
Hakim RF. Effect of Carica papaya extract toward incised wound healing process in mice (Mus musculus) clinically and histologically. Evid Based Complement Alternat Med. 2019;2019. doi: 10.1155/2019/8306519HakimRF.Effect of Carica papaya extract toward incised wound healing process in mice (Mus musculus) clinically and histologically. Evid Based Complement Alternat Med. 2019;2019. doi: 10.1155/2019/8306519Open DOISearch in Google Scholar
Nafiu AB, et al. Papaya (Carica papaya L., pawpaw), in Nonvitamin and nonmineral nutritional supplements. Elsevier; 2019. p. 335–359.NafiuABPapaya (Carica papaya L., pawpaw), in Nonvitamin and nonmineral nutritional supplements. Elsevier; 2019. p. 335–359.Search in Google Scholar
Nayak BS, et al. Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. Int Wound J. 2012;9(6):650–655. doi: 10.1111/j.1742-481X.2011.00933.xNayakBSWound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. Int Wound J. 2012;9(6):650–655. doi: 10.1111/j.1742-481X.2011.00933.xOpen DOISearch in Google Scholar
Habibi S, et al. A bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly (vinyl alcohol) nanofibrous mat: preparation, characterization, and controlled drug release. Int J Biol Macromol. 2023;240:124399. doi: 10.1016/j.ijbiomac.2023.124399HabibiSA bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly (vinyl alcohol) nanofibrous mat: preparation, characterization, and controlled drug release. Int J Biol Macromol. 2023;240:124399. doi: 10.1016/j.ijbiomac.2023.124399Open DOISearch in Google Scholar
Dubský M, et al. Pain management in older adults with chronic wounds. Drugs Aging. 2022;39(8):619–629. doi: 10.1007/s40266-022-00963-wDubskýMPain management in older adults with chronic wounds. Drugs Aging. 2022;39(8):619–629. doi: 10.1007/s40266-022-00963-wOpen DOISearch in Google Scholar
John JV, et al. Electrospun nanofibers for wound management. ChemNanoMat. 2022;8(7). doi: 10.1002/cnma.202100349JohnJVElectrospun nanofibers for wound management. ChemNanoMat. 2022;8(7). doi: 10.1002/cnma.202100349Open DOISearch in Google Scholar
Gul A, et al. Electrospun antibacterial nanomaterials for wound dressings applications. Membranes (Basel). 2021;11(12):908. doi: 10.3390/membranes11120908GulAElectrospun antibacterial nanomaterials for wound dressings applications. Membranes (Basel). 2021;11(12):908. doi: 10.3390/membranes11120908Open DOISearch in Google Scholar
Hwang PA, et al. Electrospun nanofiber composite mat based on ulvan for wound dressing applications. Int J Biol Macromol. 2023;253:126646. doi: 10.1016/j.ijbiomac.2023.126646HwangPAElectrospun nanofiber composite mat based on ulvan for wound dressing applications. Int J Biol Macromol. 2023;253:126646. doi: 10.1016/j.ijbiomac.2023.126646Open DOISearch in Google Scholar
Alyas S, et al. Anti-inflammatory, antipyretic and analgesic activities of ethanol extract of Carica papaya. J Wildl Biodivers. 2020;4(3):18–23. DOI: doi: 10.22120/jwb.2020.120874.1116AlyasSAnti-inflammatory, antipyretic and analgesic activities of ethanol extract of Carica papaya. J Wildl Biodivers. 2020;4(3):18–23. DOI: doi: 10.22120/jwb.2020.120874.1116Open DOISearch in Google Scholar
Pandey S, et al. Anti-inflammatory and immunomodulatory properties of Carica papaya. J Immunotoxicol. 2016;13(4):590–602. doi: 10.3109/1547691X.2016.1149528PandeySAnti-inflammatory and immunomodulatory properties of Carica papaya. J Immunotoxicol. 2016;13(4):590–602. doi: 10.3109/1547691X.2016.1149528Open DOISearch in Google Scholar
Ramesh K, Kambimath RS, Venkatesan N. Study of immunomodulatory activity of aqueous extract of Carica papaya in Wistar rats. Natl J Physiol Pharm Pharmacol. 2016;6(5):442.RameshKKambimathRSVenkatesanN.Study of immunomodulatory activity of aqueous extract of Carica papaya in Wistar rats. Natl J Physiol Pharm Pharmacol. 2016;6(5):442.Search in Google Scholar
Calori IR, et al. Polymer scaffolds as drug delivery systems. Eur Polym J. 2020;129:109621. doi: 10.1016/j.eurpolymj.2020.109621CaloriIRPolymer scaffolds as drug delivery systems. Eur Polym J. 2020;129:109621. doi: 10.1016/j.eurpolymj.2020.109621Open DOISearch in Google Scholar
Yang C, et al. Biomaterial scaffold-based local drug delivery systems for cancer immunotherapy. Sci Bull (Beijing). 2020;65(17):1489–1504. doi: 10.1016/j.scib.2020.04.012YangCBiomaterial scaffold-based local drug delivery systems for cancer immunotherapy. Sci Bull (Beijing). 2020;65(17):1489–1504. doi: 10.1016/j.scib.2020.04.012Open DOISearch in Google Scholar
Gurung S, Škalko-Basnet N. Wound healing properties of Carica papaya latex: in vivo evaluation in mice burn model. J Ethnopharmacol. 2009;121(2):338–341. doi: 10.1016/j.jep.2008.10.030GurungSŠkalko-BasnetN.Wound healing properties of Carica papaya latex: in vivo evaluation in mice burn model. J Ethnopharmacol. 2009;121(2):338–341. doi: 10.1016/j.jep.2008.10.030Open DOISearch in Google Scholar
Marlinawati IT, Santoso S, Irwanto Y. The effect of papaya leaf extract gel (Carica papaya) on interleukin-1β expression and collagen density (Col1A1) in the back incision wound healing of Wistar rats (Rattus norvegicus). Bahrain Med Bull. 2023;45(1).MarlinawatiITSantosoSIrwantoY.The effect of papaya leaf extract gel (Carica papaya) on interleukin-1β expression and collagen density (Col1A1) in the back incision wound healing of Wistar rats (Rattus norvegicus). Bahrain Med Bull. 2023;45(1).Search in Google Scholar
Li X, et al. Antibacterial, antioxidant and biocompatible nanosized quercetin-PVA xerogel films for wound dressing. Colloids Surf B Biointerfaces. 2022;209:112175. doi: 10.1016/j.colsurfb.2021.112175LiXAntibacterial, antioxidant and biocompatible nanosized quercetin-PVA xerogel films for wound dressing. Colloids Surf B Biointerfaces. 2022;209:112175. doi: 10.1016/j.colsurfb.2021.112175Open DOISearch in Google Scholar
Kong YR, et al. Beneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biol (Basel). 2021;10(4):287. doi: 10.3390/biology10040287KongYRBeneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biol (Basel). 2021;10(4):287. doi: 10.3390/biology10040287Open DOISearch in Google Scholar
Sharma A, et al. Carica papaya L. leaves: deciphering its antioxidant bioactives, biological activities, innovative products, and safety aspects. Oxid Med Cell Longev. 2022;2022. Carica papaya L. leaves: deciphering its antioxidant bioactives, biological activities, innovative products, and safety aspects.SharmaACarica papaya L. leaves: deciphering its antioxidant bioactives, biological activities, innovative products, and safety aspects. Oxid Med Cell Longev. 2022;2022. Carica papaya L. leaves: deciphering its antioxidant bioactives, biological activities, innovative products, and safety aspects.Search in Google Scholar
Agada R, et al. Antioxidant and anti-diabetic activities of bioactive fractions of Carica papaya seeds extract. J King Saud Univ Sci. 2021;33(2):101342. doi: 10.1016/j.jksus.2021.101342AgadaRAntioxidant and anti-diabetic activities of bioactive fractions of Carica papaya seeds extract. J King Saud Univ Sci. 2021;33(2):101342. doi: 10.1016/j.jksus.2021.101342Open DOISearch in Google Scholar
Asghar N, et al. Compositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents. Chem Cent J. 2016;10:1–11. doi: 10.1186/s13065-016-0149-0AsgharNCompositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents. Chem Cent J. 2016;10:1–11. doi: 10.1186/s13065-016-0149-0Open DOISearch in Google Scholar
Marlinawati IT, et al. Effect of papaya leaf extract gel (Carica papaya) on incision wound healing in Rattus norvegicus. Med Lab Technol J. 2022;8(2):102–111. doi: 10.31964/mltj.v0i0.455MarlinawatiITEffect of papaya leaf extract gel (Carica papaya) on incision wound healing in Rattus norvegicus. Med Lab Technol J. 2022;8(2):102–111. doi: 10.31964/mltj.v0i0.455Open DOISearch in Google Scholar
Dwivedi MK, et al. Antioxidant, antibacterial activity, and phytochemical characterization of Carica papaya flowers. Beni-Suef Univ J Basic Appl Sci. 2020;9:1–11. doi: 10.1186/s43088-020-00048-wDwivediMKAntioxidant, antibacterial activity, and phytochemical characterization of Carica papaya flowers. Beni-Suef Univ J Basic Appl Sci. 2020;9:1–11. doi: 10.1186/s43088-020-00048-wOpen DOISearch in Google Scholar
Nafiu AB, Rahman MT. Selenium added unripe carica papaya pulp extracts enhance wound repair through TGF-β1 and VEGF-a signalling pathway. BMC Complement Altern Med. 2015;15(1):1–10. doi: 10.1186/s12906-015-0900-4NafiuABRahmanMT.Selenium added unripe carica papaya pulp extracts enhance wound repair through TGF-β1 and VEGF-a signalling pathway. BMC Complement Altern Med. 2015;15(1):1–10. doi: 10.1186/s12906-015-0900-4Open DOISearch in Google Scholar
Deer TR, et al. Intrathecal bupivacaine for chronic pain: a review of current knowledge. Neuromodulation. 2002;5(4):196–207. doi: 10.1046/j.1525-1403.2002.02030.xDeerTRIntrathecal bupivacaine for chronic pain: a review of current knowledge. Neuromodulation. 2002;5(4):196–207. doi: 10.1046/j.1525-1403.2002.02030.xOpen DOISearch in Google Scholar