Cite

Oral dentures are subjected to mechanical and chemical cleansing processes. However, these processes alter the physical and mechanical properties of denture acrylic resins. This study analyzes the surface roughness of conventional heat-cured (HC) polymethacrylate, light-cured (LC) urethane dimethacrylate, and prepolymerized computer-aided design/computer-aided manufacturing (CAD/CAM) dental acrylic resins. The materials were subjected to combined surface treatment of mechanical brushing, thermal cycling, and immersion in chemical disinfectants (corega, chlorhexidine gluconate [CHG], and sodium hypochlorite) to simulate 1 year of clinical use. The surface roughness of the resin specimens before and after surface treatment was evaluated using a noncontact profilometer. Statistical tests based on analysis of variance revealed significant interactions between resin type and disinfectants, indicating that the effects of these two factors were interdependent. The highest and lowest surface roughness was observed in HC resins immersed in CHG and CAD/CAM resins immersed in sodium hypochlorite. Among the materials, HC resins demonstrated the overall highest mean roughness, followed by LC and CAD/CAM resins. Regarding the disinfectant use, the highest mean roughness was observed in disks immersed in CHG, followed by those immersed in corega and sodium hypochlorite. The prepolymerized CAD/CAM acrylic resin demonstrated superior surface quality following combined surface treatments. The HC and LC resins exceeded the roughness threshold and the reported roughness values for acrylic resins following surface treatments. Among the disinfectants tested, sodium hypochlorite produced overall low roughness values.

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties