1. bookVolume 38 (2020): Issue 4 (December 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Enhanced magnetoelastic performance in Pr/Mn-doped Laves phase (Tb,Ho)Fe2 compounds

Published Online: 13 Apr 2021
Volume & Issue: Volume 38 (2020) - Issue 4 (December 2020)
Page range: 707 - 714
Received: 03 Sep 2020
Accepted: 22 Dec 2020
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Magnetostrictive TbxHo0:8−xPr0:2Fe1:8Mn0:1 (0 ⩽ x ⩽ 0.20) alloys are prepared by arc-melting and subsequent annealing. The dopant of Pr/Mn introduced into RFe2 compounds effectively stabilizes the forming of single C15 Laves phase at ambient pressure. The easy magnetization direction (EMD) varies when Tb content increases, which is accompanied by a crystalstructural transition. EMD lies along ‹1 0 0› axis for x ⩽ 0.05, rotating to ‹1 1 1› axis for x ⩽ 0.12, with a tetragonal symmetry changing to a rhombohedral one. Magnetocrystalline-anisotropy compensation is obtained with the optimized composition of x = 0.12, shifting to the Tb-poor side in comparison to Pr/Mn-free counterpart. An enhanced effect on magnetoelastic properties is achieved in Tb0:12Ho0:68Pr0:2Fe1:8Mn0:1, which simultaneously possesses a low anisotropy and high magnetostriction performance, i.e. λs ~ 420 ppm, λ111 ~ 970 ppm, and a large low-field λa ~ 390 ppm/2 kOe, being 30 % higher than that of Pr/Mn-free compound. Combining low-cost light rare earth Pr with the lower Tb content, Tb0:12Ho0:68Pr0:2Fe1:8Mn0:1 may make it promising solution in magnetostrictive applications.

Keywords

[1] Clark A.E., Magnetostrictive rare earth-Fe2 compounds, in: Wohlfarth E.P. (Ed.), Ferromagnetic Materials, vol. 1, North-Holland, Amsterdam, 1980, p. 531.10.1016/S1574-9304(05)80122-1 Search in Google Scholar

[2] Wang M.K., Liu J.J., Ding Q.L., Xiao Y., Jiao R.B., Hu D., Xing S., Pan Z.B., Xia W.X., Liu J.P., J. Alloy. Compd., 835 (2020), 155324.10.1016/j.jallcom.2020.155324 Search in Google Scholar

[3] Shen W.C., Lin L.L., Shen C.Y., Xing S., Pan Z.B., Mater. Sci.-Poland, 37 (2019), 257. Search in Google Scholar

[4] Tang C.C., Zhan W.S., Li Y.X., Chen D.F., Du J., Wu G.H., Li J.Y., Jia K.C., J. Phys.: Condens. Matter., 9 (1997), 9651.10.1088/0953-8984/9/44/019 Search in Google Scholar

[5] Rajasekhar P., Markandeyulu G., J. Magn. Magn. Mater., 448 (2018), 82. Search in Google Scholar

[6] Shi Y.G., Hu C.C., Fan J.Y., Shi D.N., Lv L.Y., Tang S.L., Appl. Phys. Lett., 101 (2012), 192405.10.1063/1.4767127 Search in Google Scholar

[7] Li F., Liu J.J., Zhu X.Y., Shen W.C., Lin L.L., Du J., Si P.Z., Solid State Commun., 275 (2018), 63. Search in Google Scholar

[8] Zhang G.B., Liu Y.D., Kan C.X., Shi Y.G., Shi D.N., Mater. Res. Bull., 112 (2019), 174.10.1016/j.materresbull.2018.12.025 Search in Google Scholar

[9] He C.X., Tang Y.M., Li X., He Y., Lu C.Y., Guo Z.P., Chin. Phys. B, 28 (2019), 117501.10.1088/1674-1056/ab47f6 Search in Google Scholar

[10] Zhang Z., Lu W.J., Dong S.Z., Bai H.R., Yang T.N., We D.H., J. Magn. Magn. Mater., 471 (2019), 64. Search in Google Scholar

[11] Thoma D.J., Perepezko J.H., J. Alloy. Compd., 224 (1995), 330.10.1016/0925-8388(95)01557-4 Search in Google Scholar

[12] Arout Chelvane J., Markandeyulu G., J. Magn. Magn. Mater., 294 (2005), 298. Search in Google Scholar

[13] Hu C.C., Shi Y.G., Shi D.N., Tang S.L., Fan J.Y., Du Y.W., J. Appl. Phys., 113 (2013), 203906.10.1063/1.4807583 Search in Google Scholar

[14] Pan Z.B., Liu J.J., Si P.Z., Ren W.J., Mater. Res. Bull., 77 (2016), 122. Search in Google Scholar

[15] Li F., Liu J.J., Zhang Z.R., Lin L.L., Shen W.C., Zhu X.Y., Du J., Si P.Z., J. Alloy. Compd., 725 (2017), 946.10.1016/j.jallcom.2017.06.117 Search in Google Scholar

[16] Wang M.K., Liu J.J., Ding Q.L., Xiao Y., Jiao R.B., Pan Z.B., Xia W.X., Liu J.P., J. Magn. Magn. Mater., 501 (2020), 166422.10.1016/j.jmmm.2020.166422 Search in Google Scholar

[17] Jammalamadaka S.N., Markandeyulu G., Balasubramaniam K., Appl. Phys. Lett., 97 (2010), 242502. Search in Google Scholar

[18] Meng H., Zhang T.L., Jiang C.B., Xu H.B., Appl. Phys. Lett., 96 (2010), 102501.10.1063/1.3350891 Search in Google Scholar

[19] Dong M., Liu T., Guo X.Y., Xiao Y.B., Yuan Y., Wang Q., J. Appl. Phys., 125 (2019), 033901.10.1063/1.5080799 Search in Google Scholar

[20] Cullen J.R., Clark A.E., Phys. Rev. B, 15 (1977), 4510.10.1103/PhysRevB.15.4510 Search in Google Scholar

[21] Murtaza A., Yang S., Chang T.Y., Ghani A., Khan M.T., Zhang R., Zhou C., Song X.P., Suchomel M., Ren Y., Phys. Rev. B, 97 (2018), 104410.10.1103/PhysRevB.97.104410 Search in Google Scholar

[22] Chikazumi S., Law of approach to saturation, in: Physics of Ferromagnetism, 2nd ed., Oxford University Press, New York, 1997, pp. 503 – 508. Search in Google Scholar

[23] Shi Y.G., Zhou X.G., Hu C.C., Shi D.N., Lv L.Y., Tang S.L., J. Alloys. Compd., 581 (2013), 753.10.1016/j.jallcom.2013.07.083 Search in Google Scholar

[24] Guo H.Q., Gong H.Y., Yang H.Y., Li Y.F., Yang L.Y., Shen B.G., Li R.Q., Phys. Rev. B, 54 (1996), 4107.10.1103/PhysRevB.54.4107 Search in Google Scholar

[25] Koon N.C., Schindler A.I., Williams C.M., Carter F.L., J. Appl. Phys., 45 (1974), 5389.10.1063/1.1663249 Search in Google Scholar

[26] Liu X.Y., Liu J.J., Pan Z.B., Song X.H., Zhang Z.R., Du J., Ren W.J., J. Magn. Magn. Mater., 391 (2015), 60. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo