1. bookVolume 38 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

First-Principles Calculation of Cr/S Co-doped Rutile TiO2

Published Online: 06 Oct 2020
Volume & Issue: Volume 38 (2020) - Issue 2 (June 2020)
Page range: 253 - 262
Received: 11 May 2017
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The electronic structures and optical properties of pure, Cr, S single- and Cr/S co-doped rutile TiO2 were calculated by the first-principle plane wave pseudopotential method based on density functional theory. The calculated results indicate that the three different doping ways can lead to lattice distortion in the rutile TiO2 and introduce local electronic states in the forbidden band of TiO2. The local energy levels in the forbidden band of TiO2 are mainly contributed by Cr-3d and S-3p orbital. Compared with pure TiO2, the absorption edges (i.e. the edge of the main peak) of the doped TiO2 have different blue shifts; however, the light response ranges of the doped systems are extended, especially in the case of Cr single- and Cr/S co-doped TiO2. The extension of the visible light response range of the doped TiO2 may enhance its visible light photocatalytic performance. In addition, the co-doped TiO2 has a stronger oxidation ability, which may increase the catalytic efficiency of TiO2.

Keywords

[1] Wang P., Gratzel M., Nat. Mater., 21 (2003), 402.Search in Google Scholar

[2] Ohno T., Mitsui T., Matsumura M., Chem. Lett., 32 (2003), 364.10.1246/cl.2003.364Search in Google Scholar

[3] Xu L., Tang C.O., Qian J., Acta. Phys. Sin., 59 (2010), 2721.10.7498/aps.59.2721Search in Google Scholar

[4] Kamisaka H., Adachi T., Yamashita K., J. Chem. Phys., 123 (2005), 84704.10.1063/1.200763016164318Search in Google Scholar

[5] Fujishima A., Honda K., Nature, 238 (1972), 37.10.1038/238037a012635268Search in Google Scholar

[6] Zhang J.H., Feng Q., Zhu H.Q., Yang Y., Chinese J. Lasers, 42 (2015), 200.10.3788/CJL201542.0606001Search in Google Scholar

[7] Grant F.A., Rev. Mod. Phys., 31 (1959), 646.10.1103/RevModPhys.31.646Search in Google Scholar

[8] Pan F.C., Lin X.L., Chen H.M., Acta. Phys. Sin., 64 (2015), 259.Search in Google Scholar

[9] Lu T.C., Liu Y.Z., Lin L.B., Zu X.T., Zhu J.M., Wu L.P., J. Inorg. Mater., 16 (2001), 373.Search in Google Scholar

[10] Yang Z.H., Zhang Y.P., Kang C.P., Zhang R., Zhang M.G., Acta. Photon. Sin., 4 (2014), 150Search in Google Scholar

[11] Shi B.C., Liu Y., Song C.L., Han G.R., Rare. Metal. Mat. Eng., 37 (2008), 638.Search in Google Scholar

[12] Hohenberg P., Kohn W., Phys. Rev., 136 (1964), B864.10.1103/PhysRev.136.B864Search in Google Scholar

[13] Segall M.D., Philip J.D.L., J. Phys.: Dondens. Matter., 14 (2002), 2717.10.1088/0953-8984/14/11/301Search in Google Scholar

[14] Beeke A.D., Phys. Rev. A, 38 (1988), 3098.10.1103/PhysRevA.38.3098Search in Google Scholar

[15] Perdew J.P., Phys. Rev. B, 33 (1986), 8822.10.1103/PhysRevB.33.88229938299Search in Google Scholar

[16] Traylor J.G., Smith H.G., Nicklow R.M., Wilkinson M.K., Phys. Rev. B, 3457 (1971).10.1103/PhysRevB.3.3457Search in Google Scholar

[17] Feng Q., Wang X.Q., Liu G.B., J. Atom. Mol. Phys., 25 (2008), 1096.Search in Google Scholar

[18] Wang Y., Shao X., Wang B., Acta. Phys-Chim. Sin., 29 (2013), 1363.Search in Google Scholar

[19] Umebayashi T., Yamaki T., Itoh H., Asai K., Appl. Phys. Lett., 81 (2002), 454.10.1063/1.1493647Search in Google Scholar

[20] Chen Q.L., Tang C.Q., J. Mater. Sci. Eng., 24 (2006), 514.Search in Google Scholar

[21] Feng Q., J. Chongqing Nor. Univ: Natur. Sci., 26 (2009), 106.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo