1. bookVolume 38 (2020): Issue 2 (June 2020)
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year
access type Open Access

X-ray diffraction study of the elastic properties of jagged spherical CdS nanocrystals

Published Online: 06 Oct 2020
Volume & Issue: Volume 38 (2020) - Issue 2 (June 2020)
Page range: 271 - 278
Received: 09 Jun 2017
Accepted: 23 Apr 2019
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year

In this work, jagged spherical CdS nanocrystals have been synthesized by chemical method to study their elastic properties. The synthesized CdS nanocrystal has been characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The transmission electron microscope images show that the average size of the nanocrystal is 100 nm approximately. X-ray diffraction (XRD) study confirms that the CdS nanocrystals are in cubic zinc blende structure. The size calculated from the XRD is consistent with the average size obtained from the TEM analysis. The XRD data have been analyzed to study the elastic properties of the jagged spherical CdS nanocrystals, such as intrinsic strain, stress and energy density, using WilliamsonHall plot method. Williamson-Hall method and size-strain plot (SSP) have been used to study the individual effect of crystalline size and lattice strain on the peak broadening of the jagged spherical CdS nanocrystals. Size-strain plot (SSP) and root mean square (RMS) strain further confirm the results obtained from W-H plots.


[1] Landes C.F., Link S., Babak Nikoobakht M.B.M., El-Sayed M.A., Pure Appl. Chem., 74 (9) (2002), 1675.10.1351/pac200274091675Search in Google Scholar

[2] Pinna N., Weiss K., Urban J., Pileni M.P., Adv. Mater., 13 (4) (2001), 261.10.1002/1521-4095(200102)13:4<261::AID-ADMA261>3.0.CO;2-XSearch in Google Scholar

[3] Chae W.S., Shin H.W., Lee E.S., Shin E.J., Jung J.S., Kim Y.R., J. Phys. Chem. B, 109 (2005), 6204.10.1021/jp044402vSearch in Google Scholar

[4] Burda C., Chen X., Narayanan R., El-Sayed M.A., Chem. Rev., 105 (2005), 1025.10.1021/cr030063aSearch in Google Scholar

[5] Manna L., Milliron D.J., Meisel A., Scher E.C., Alivisatos A.P., Nature Mater., 2 (2003), 382.10.1038/nmat902Search in Google Scholar

[6] Cao H., Wang G., Zhang S., Zhang X., Rabinovich D., Inorg. Chem., 45 (2006), 5103.10.1021/ic060440cSearch in Google Scholar

[7] Pandey G., Dixit S., J. Phys. Chem. C, 115 (2011), 17633.10.1021/jp2015897Search in Google Scholar

[8] Garcia M.A., Merino J.M., Pinel E.F., Quesada A., Venta J. De la, Gonzalez M.L.R., Castro G.R., Crespo P., Llopis J., Gonzalez-Calbet J.M., Hernando A., Nano Lett., 7 (6) (2007), 1489.10.1021/nl070198mSearch in Google Scholar

[9] Tachikawa S., Noguchi A., Tsuge T., Hara M., Odawara O., Wada H., Materials, 4 (2011), 1132.10.3390/ma4061132Search in Google Scholar

[10] Demir R., Gode F., Chalcogenide Lett., 12 (2) (2015), 43.Search in Google Scholar

[11] Borah J.P., Sarma K.C., Acta Phys. Pol. A, 114 (4) (2008), 713.10.12693/APhysPolA.114.713Search in Google Scholar

[12] Sharma M., Kumar S., Pandey O.P., J. Nanopart. Res., 12 (2010), 2655.10.1007/s11051-009-9844-2Search in Google Scholar

[13] Bezdetko Y.S., Klyuev V.G., Proc. Nap., 3 (2014), 01PCSI03.Search in Google Scholar

[14] Hao E., Anderson N.A., Asbury J.B., Lian T., J. Phys. Chem. B, 106 (2002), 10191.10.1021/jp021226mSearch in Google Scholar

[15] Amelia M., Flamini R., Latterini L., Langmuir, 26 (12) (2010), 10129.10.1021/la100249t20429615Search in Google Scholar

[16] Murakoshi K., Hosokawa H., Saitoh M., Wada Y., Sakata T., Mori H., Satoh M., Yanagida S., J. Chem. Soc. Faraday T., 94 (4) (1998), 579.10.1039/a707192bSearch in Google Scholar

[17] Banerjee R., Jayakrishnan R., Ayyub P., J. Phys.: Condens. Mater., 12 (2000), 10647.10.1088/0953-8984/12/50/325Search in Google Scholar

[18] Li L., Yang X., Gao J., Tian H., Zhao J., Hagfeldt A., Sun L., J. Am. Chem. Soc., 133 (2011), 8458.10.1021/ja201841p21553879Search in Google Scholar

[19] Demir R., Okur S., S¸eker M., Indian Eng. Chem. Res., 51 (2012), 3309.10.1021/ie201509aSearch in Google Scholar

[20] Qian J., Yan S., Xiao Z., J. Colloid Interf. Sci., 366 (2012), 130.10.1016/j.jcis.2011.09.08222018624Search in Google Scholar

[21] Martínez-Alonso C., Rodríguez-Castañeda C.A., Moreno-Romero P., Coria-Monroy C.S., Hu H., Int. J. Photoenergy, 2014 (2014), 453747.10.1155/2014/453747Search in Google Scholar

[22] Kumar L., Dhawan S.K., Kumar M., Kamalasanan M.N., Chandra S., IJPAP, 41 (2003), 641.Search in Google Scholar

[23] Sun W., Zhong J., Zhang B., Jiao K., Anal. Bioanal. Chem., 389 (2007), 2179.10.1007/s00216-007-1661-917938892Search in Google Scholar

[24] Gonçalves L.F.F.F., Kanodarwala F.K., Stride J.A., Silva C.J.R., Gomes M.J.M., Opt. Mater., 36 (2013), 186.10.1016/j.optmat.2013.08.026Search in Google Scholar

[25] Raj F.M., Rajendran A.J., Int. J. Innov. Res. Sci. Eng. Tech., 4 (1) (2015), 56.Search in Google Scholar

[26] Ikhmayies S.J., Int. J. Mater. Chem., 3(2) (2013), 28.10.1007/s11837-013-0826-6Search in Google Scholar

[27] Urbiola I.R.C., Martínez J.A.B., Borja J.H., García C.E P., Bon R.R., Vorobiev Y.V., Energy Proc., 57 (2014), 24.10.1016/j.egypro.2014.10.004Search in Google Scholar

[28] Sun S.Q., Li T., Cryst. Growth Des., 7 (11) (2007), 2367.10.1021/cg060529tSearch in Google Scholar

[29] Qi W.H., Wang M.P., Xu G.Y., J. Mater. Sci. Lett., 22 (2003), 1333.10.1023/A:1025779126267Search in Google Scholar

[30] Qi W.H., Wang M.P., J. Nanoparticle Res., 7 (2005), 51.10.1007/s11051-004-7771-9Search in Google Scholar

[31] Ungar T., J. Mater. Sci., 42 (2007), 1584.10.1007/s10853-006-0696-1Search in Google Scholar

[32] Cullity B.D., Dennis B., Elements of X-ray diffraction, 2nd ed., Addision-Wesley Publishing Company Inc., 1978.Search in Google Scholar

[33] Chandel S., Anjan P.R., Vallamattom A.J., Nampoori V.P.N., Radhakrishnan P., International Conference on Fiber Optics and Photonics, OSA 2012.Search in Google Scholar

[34] Dey P.C., Das R., J. Lumin., 183 (2017), 368.10.1016/j.jlumin.2016.11.071Search in Google Scholar

[35] Uvarov V., Popov I., Mater. Charact., 58 (2007), 883.10.1016/j.matchar.2006.09.002Search in Google Scholar

[36] Das R., Sarkar S., Opt. Mater., 48 (2015), 203.10.1016/j.optmat.2015.07.038Search in Google Scholar

[37] Das R., Sarkar S., Curr. Sci., 109 (4) (2015), 775.Search in Google Scholar

[38] Das R., Nath S.S., Bhattacharjee R., Physica E, 43 (1) (2010), 224.10.1016/j.physe.2010.07.008Search in Google Scholar

[39] Zak A.K., Majid W.H.ABD., Abrishami M.E., Yousefi R., Solid State Sci., 13 (2011), 251.10.1016/j.solidstatesciences.2010.11.024Search in Google Scholar

[40] Prabhu Y.T., Rao K.V., Sai Kumar V.S., Kumari B.S., World J. Nano Sci. Eng., 4 (2014), 21.10.4236/wjnse.2014.41004Search in Google Scholar

[41] Jacob R., Isac J., Int. J. Chem. Studies, 2 (5) (2015), 12.Search in Google Scholar

[42] Senthil Saravanan M.S., Sivaprasad K., Susila P., Kumaresh Babu S.P., Physica B, 406 (2011), 165.10.1016/j.physb.2010.10.023Search in Google Scholar

[43] Birkholz M., Thin film analysis by X-ray scattering, Wiley-VCH Verlag GmbH and Co., KGaA, Weinheim, 2006.Search in Google Scholar

[44] Venkateswarlu K., Bose A.C., Rameshbabu N., Physica B, 405 (20) (2010), 4256.10.1016/j.physb.2010.07.020Search in Google Scholar

[45] Sivakami R., Dhanuskodi S., Karvembu R., Spectrochim. Acta Part A, 152 (2016), 43.10.1016/j.saa.2015.07.008Search in Google Scholar

[46] Yan Z., Vincent J., Sci. China-Phys. Mech. Astron., 56 (4) (2013), 694.10.1007/s11433-013-5025-5Search in Google Scholar

[47] Lalena J.N., Cleary D.A., Principles of Inorganic Materials Design, 2nd ed., John Wiley & Sons, Inc. Publication, Hoboken, New Jersey, 2010.10.1002/9780470567548Search in Google Scholar

[48] Cazzani A., Rovati M., Int. J. Solids Struct., 40 (2003), 1713.10.1016/S0020-7683(02)00668-6Search in Google Scholar

[49] Wright K., Gale J.D., Phys. Rev. B, 70 (2004), 035211.10.1103/PhysRevB.70.035211Search in Google Scholar

[50] Vaezi M.R., Shah Ghassemi S.H.M., Shokuhfar A., Mater. Sci.-Poland, 26 (3) (2008), 601.Search in Google Scholar

[51] Bhushan B., Luo D., Schricker S.R., Sigmund W., Zauscher S., Handbook of nanomaterials properties, Springer Heidelberg, New York – Dordrecht – London, 2014.10.1007/978-3-642-31107-9Search in Google Scholar

[52] Ortiz A.L., Shaw L., Acta Mater., 52 (2004), 2185.10.1016/j.actamat.2004.01.012Search in Google Scholar

[53] Wilson, A.C.J., X-ray Optics, London, 1949.Search in Google Scholar

[54] Biju V., Sugathan N., Vrinda V., Salini S.L., J. Mater. Sci., 43 (2008), 1175.10.1007/s10853-007-2300-8Search in Google Scholar

[55] Bindu P., Thomas S., J. Theor. Appl. Phys., 8 (2014), 123.10.1007/s40094-014-0141-9Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo