1. bookVolume 38 (2020): Issue 1 (March 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Direct formation of ZnO nanorods by hydrothermal process: study on its optical properties and electron transport

Published Online: 08 May 2020
Volume & Issue: Volume 38 (2020) - Issue 1 (March 2020)
Page range: 91 - 96
Received: 26 Jul 2018
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

We report a new direct fabrication of the ZnO nanorods (NR) by hydrothermal method, in which the preparation of seed layer is eliminated. We show that the tuning of initial temperature rate during the hydrothermal process plays a key role in the structural modification of the ZnO NR. A highly oriented ZnO NR is successfully fabricated by using a low rate of initial temperature. The increase of optical absorption and electron transport was obtained by reducing the diameter and increasing distribution of the ZnO NR on the substrate. Interestingly, an additional absorption from the defects is obtained in the system, which plays an important role in expanding the optical absorption. Our system will provide a favourable characteristic for developing the high-performance optoelectronic devices with high optical absorption and high electron transport.

Keywords

[1] Bae S.-Y., Sci. Rep., 7 (2017), 45345.10.1038/s41598-017-01363-6543098328465532Search in Google Scholar

[2] Ou S.-L., Yu F.-P., Wuu D.-S., Sci. Rep., 7 (2017), 14251.10.1038/s41598-017-14592-6566019629079822Search in Google Scholar

[3] Wang X., Pey K.L., Yip C.H., Fitzgerald E.A., Antoniadis D.A., J. Appl. Phys., 108 (12) (2010), 124303.10.1063/1.3520217Search in Google Scholar

[4] Kushwaha A., Aslam M., Int. J. Nanosci., 10 (2011), 635.10.1142/S0219581X11009155Search in Google Scholar

[5] Ramesh R., Loganathan R., Menon S.S., Baskar K., Singh S., RSC Adv., 4 (14) (2014), 7112.10.1039/c3ra45250fSearch in Google Scholar

[6] Montenegro D.N., Souissi A., MartínezTomás C., Muñoz-Sanjosé V., Sallet V., J. Cryst. Growth, 359 (2012), 122.10.1016/j.jcrysgro.2012.08.038Search in Google Scholar

[7] Rivera A., Mazady A., Anwar M., Int. J. High Speed El. Sys., 24 (2015), 1520014.10.1142/S0129156415200141Search in Google Scholar

[8] Pan C., Zhu J., J. Mater. Chem., 19 (7) (2009), 869.10.1039/b816463kSearch in Google Scholar

[9] Wagner R.S., Ellis W.C., Appl. Phys. Lett., 4 (5) (1964), 89.10.1063/1.1753975Search in Google Scholar

[10] Shimizu T., J. Surf. Sci. Nanotechnol., 10 (2012), 476.10.1380/ejssnt.2012.476Search in Google Scholar

[11] Liu C., Yun F., Morkoç H., J. Mater. Sci.: Mat. El., 16 (9) (2005), 555.10.1007/s10854-005-3232-1Search in Google Scholar

[12] Coey J., Curr. Op. Solid State Mat. Sci., 10 (2) (2006), 83.10.1016/j.cossms.2006.12.002Search in Google Scholar

[13] Herng T.S., Phys. Rev. Lett., 105 (20) (2010), 207201.Search in Google Scholar

[14] Herng T.S., Adv. Mater., 23 (14) (2011), 1635.10.1002/adma.20100451921472791Search in Google Scholar

[15] Yong Z., Phys. Rev. B, 93 (20) (2016).10.1103/PhysRevC.93.014602Search in Google Scholar

[16] Guziewicz E., J. Appl. Phys., 105 (2009), 122413.10.1063/1.3133803Search in Google Scholar

[17] Hoffman R.L., Norris B.J., Wager J.F., Appl. Phys. Lett., 82 (2003), 733.10.1063/1.1542677Search in Google Scholar

[18] Djurišić A.B., Ng A.M.C., Chen X.Y., Prog. Quantum El., 34 (4) (2010), 191.10.1016/j.pquantelec.2010.04.001Search in Google Scholar

[19] Wang J.X., Sun X.W., Yang Y., Huang H., Tanand O.K., Vayssieres L., Nanotechnology, 17 (19) (2006), 4995.10.1088/0957-4484/17/19/037Search in Google Scholar

[20] Rahman M.M., Jamal A., Khan S.B., Faisal M., ACS Appl. Mater. Interface., 3 (2011), 1346.10.1021/am200151f21443253Search in Google Scholar

[21] Pearton S.J.., J. Electron. Mater., 35 (2006), 862.10.1007/BF02692541Search in Google Scholar

[22] Ronning C., Gao P.X., Ding Y., Wang Z.L., Schwen D., Appl. Phys. Lett., 84 (5) (2004), 783.10.1063/1.1645319Search in Google Scholar

[23] Yuan Z., Yu J., Jiang Y., Energy Procedia, 12 (2011), 502.10.1016/j.egypro.2011.10.067Search in Google Scholar

[24] Peksu E., Karaagac H., J. Nanomater., 2015 (2015), 10.10.1155/2015/516012Search in Google Scholar

[25] Michael E.S., Sieglinde M.L.P., Akintude I.A., Andrew J.F., Nanotechnol., 23 (34) (2012), 344009.10.1088/0957-4484/23/34/34400922885284Search in Google Scholar

[26] Shi L., Langmuir, 29 (33) (2013), 10603.10.1021/la402339m23841720Search in Google Scholar

[27] Kwon D.-K., Lee S.J., Myoung J.-M., Nanoscale, 8 (37) (2016), 16677.10.1039/C6NR05256H27714079Search in Google Scholar

[28] Daniel S.C., Matthew H., Van K.E., Jong-In H., Nanotechnol., 28 (14) (2017), 145203.10.1088/1361-6528/aa623728281467Search in Google Scholar

[29] Chung Y.-A., Chang Y.-C., Lu M.-Y., Wang C.-Y., Chen L.-J., J. Electrochem. Soc., 156 (5) (2009), F75.10.1149/1.3083221Search in Google Scholar

[30] Wu C., Huang Q., J. Lumin., 130 (11) (2010), 2136.10.1016/j.jlumin.2010.06.007Search in Google Scholar

[31] Hsu C.-L., Chen K.-C., J. Phys. Chem. C, 116 (16) (2012), 9351.10.1021/jp301527ySearch in Google Scholar

[32] Banna G.M.H.U., Il-Kyu P., Nanotechnol., 28 (44) (2017), 445402.10.1088/1361-6528/aa865d28809757Search in Google Scholar

[33] Kurniawan R., Opt. Mater. Express, 7 (11) (2017), 3902.10.1364/OME.7.003902Search in Google Scholar

[34] Kurniawan R., Mater. Res. Express, 4 (2) (2017), 024003.10.1088/2053-1591/aa56ceSearch in Google Scholar

[35] Zhang Q., Dandeneau C.S., Zhou X., Cao G., Adv. Mater., 21 (41) (2009), 4087.10.1002/adma.200803827Search in Google Scholar

[36] Vittal R., Ho K.-C., Renew. Sust. Energ. Rev., 70 (2017), 920.10.1016/j.rser.2016.11.273Search in Google Scholar

[37] Sun X., Int. J. Photoenergy, 2017 (2017), 10.10.1155/2017/4935265Search in Google Scholar

[38] Zhang P., Adv. Mater., 30 (3) (2018), 1703737.10.1002/adma.20170373729105851Search in Google Scholar

[39] Park N.-G., J. Phys. Chem. Lett., 4 (15) (2013), 2423.10.1021/jz400892aSearch in Google Scholar

[40] Snaith H.J., J. Phys. Chem. Lett., 4 (21) (2013), 3623.10.1021/jz4020162Search in Google Scholar

[41] Tseng Z.-L., Chiang C.-H., Wu C.-G., Sci. Rep., 5 (2015), 13211.10.1038/srep13211458593426411577Search in Google Scholar

[42] Oeurn C.C., Hatim A., Ali A.M., Omer N., Magnus W., Phys. Status Solidi A, 211 (11) (2014), 2611.Search in Google Scholar

[43] Yang Z., Sci. Rep., 5 (2015), 11377.10.1038/srep13609455200426314514Search in Google Scholar

[44] Gautam K., Singh I., Nirwal V.S., Singh J., Peta K.R., Bhatnagar P.K., AIP Conf. Proc., 1728 (1) (2016).Search in Google Scholar

[45] Barsoum M.W., Fundamentals of ceramics, Institute of Physics Publishing, Bristol and Philadelphia, 2003.10.1887/0750309024Search in Google Scholar

[46] Fuad A., Fibriyanti A.A., Subakti, Mufti N., Taufiq A., IOP Conf. Ser. Mater. Sci. Eng., 202 (1) (2017), 012074.10.1088/1757-899X/202/1/012074Search in Google Scholar

[47] Idiawati R., IOP Conf. Ser. Mater. Sci. Eng., 202 (1) (2017), 012050.10.1088/1757-899X/202/1/012050Search in Google Scholar

[48] Senthamizhan A., Balusamy B., Aytac Z., Uyar T., CrystEngComm, 18 (34) (2016), 6341.10.1039/C6CE00693KSearch in Google Scholar

[49] Gsiea A.M., Goss J.P., Briddon P.R., alHabashi R.M., Etmimi K.M., Marghani K.A.S., Int. J. Math. Comput. Phys. Elec. Comput. Eng., 8 (1) (2014), 127.Search in Google Scholar

[50] Fujiwara H., Spectroscopic Ellipsometry: Principles and Applications, John Wiley & Sons, 2007.10.1002/9780470060193Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo