1. bookVolume 38 (2020): Issue 1 (March 2020)
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year
access type Open Access

Density functional study of structures, stabilities and electronic properties of AgAunλ(λ=0,±1;n=1-12){\rm{AgAu}}_n^\lambda \left( {\lambda = 0, \pm 1;n = 1 - 12} \right) clusters: comparison with pure gold clusters

Published Online: 08 May 2020
Volume & Issue: Volume 38 (2020) - Issue 1 (March 2020)
Page range: 97 - 107
Received: 10 Aug 2018
Accepted: 23 Apr 2019
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year

Geometrical structures, relative stabilities and electronic properties of neutral, cationic and anionic pure gold Aun+1λ{\rm{A}}u_{n + 1}^\lambda and Ag-doped bimetallic AgAunλ(λ=0,±1;n=1-12){\rm{AgAu}}_n^\lambda \left( {\lambda = 0, \pm 1;n = 1 - 12} \right) clusters have been systematically investigated by using density functional theory methodology. The optimized structures show that planar to three-dimensional structural transition occurs at n = 5 for cationic clusters. Due to strong relativistic effect of Au clusters, the ground state configurations of neutral and anionic bimetallic clusters favor planar geometry till n = 12. Silver atoms tend to occupy the most highly coordinated position and form the maximum number of bonds with Au atoms. The computed HOMO-LUMO energy gaps, fragmentation energies and second-order difference of energies show interesting odd-even oscillation behavior. The result indicates that AgAu5, AgAu2+{\rm{AgAu}}_2^ + and AgAu2-{\rm{AgAu}}_2^ - are the most stable clusters in this molecular system. The DFT based descriptors of bimetallic clusters are also discussed and compared with pure gold clusters. The high value of correlation coefficient between HOMO-LUMO energy gaps and DFT based descriptors supports our analysis. A good agreement between experimental and theoretical data has been obtained in this study.


[1] Zhao Y.R., Kuang X.Y., Zheng B.B, Li Y.F., Wand S.J., J. Phys. Chem. A, 115 (2010), 569.10.1021/jp108695z21192697Search in Google Scholar

[2] Pal R., Wang L.M., Huang W., J. Am. Chem. Soc., 131 (2009), 3396.10.1021/ja810093t19216568Search in Google Scholar

[3] Eachus R.S., Marchetti A.P., Muenter A.A., Annu. Rev. Phys. Chem., 50 (1999), 117.10.1146/annurev.physchem.50.1.11715012408Search in Google Scholar

[4] Zhao Y., Li Z.Y., Yang J.L., Phys. Chem. Chem. Phys., 11 (2009), 2329.10.1039/b817806b19305908Search in Google Scholar

[5] Hou S.M., Zhang J.X., Li R., Ning J., Han R.S., Shen Z.Y., Zhao X.Y., Xue Z.Q., Wu Q.D., Nanotechnology, 16 (2005), 239.10.1088/0957-4484/16/2/01021727429Search in Google Scholar

[6] Scaffardi L.B, Pellegri N., Sanctis D.O., Tocho J.O., Nanotechnology, 16 (2005), 158.10.1088/0957-4484/16/1/030Search in Google Scholar

[7] Fournier R., J. Chem. Phys., 115 (2001), 2165.10.1063/1.1383288Search in Google Scholar

[8] Yuan D.W., Wang Y., Zeng Z., J. Chem. Phys., 122 (2005), 114310.10.1063/1.186223915836218Search in Google Scholar

[9] Zhao S., Ren Y.L., Wang J.J., Yin W.P., J. Phys. Chem. A, 114 (2010), 4917.10.1021/jp910230p20307058Search in Google Scholar

[10] Torres M.B., Fernandez E.M., Balbas L.C., J. Phys. Chem. A, 112 (2008), 6678.10.1021/jp800247n18578480Search in Google Scholar

[11] Hashmi A.S.K., Loos A., Littmann A., Braun I., Knight J., Doherty S., Rominger F., Angew. Chem., 351 (2009), 576.10.1002/adsc.200800681Search in Google Scholar

[12] Neumaier M., Weigend F., Hamper O., Kappes M.M., J. Chem. Phys., 125 (2006), 104308.10.1063/1.2348876Search in Google Scholar

[13] Autschbach J., Hess B.A., Johansson M.P., Neugebauer J., Patzschke M., Pyykkö P., Reiher M., Sundholm D., Phys. Chem. Chem. Phys., 6 (2004), 11.10.1039/B310395ASearch in Google Scholar

[14] Ackerson C.J., Jadzinsky P.D., Jensen G.J., Kornberg R.D., J. Am. Chem. Soc., 128 (2006), 2635.10.1021/ja0555668Search in Google Scholar

[15] Shaw C.F.III., Chem. Rev., 99 (1999), 2589.10.1021/cr980431oSearch in Google Scholar

[16] Valden M., Lai X., Goodman D.W., Science, 281 (1998), 1647.10.1126/science.281.5383.1647Search in Google Scholar

[17] Fèlix C., Sieber C., Harbich W., Buttet J., Rabin I., Schulze W., Ertl G., Phys. Rev. Lett., 86 (2001), 2992.10.1103/PhysRevLett.86.2992Search in Google Scholar

[18] Kim S.H., Medeiros-Ribeiro G., Ohlberg D.A.A., Williams R.S., Heath J.R., J. Phys. Chem. B, 103 (1999), 10341.10.1021/jp991952ySearch in Google Scholar

[19] Bravo-Pèrez G., Garzón I.L., Novaro O., Chem. Phys. Lett., 313 (1999), 655.10.1016/S0009-2614(99)00957-4Search in Google Scholar

[20] Boyen H.G., Kästle G., Weigl F., Koslowski B., Dietrich C., Ziemann P., Spatz J.P., Riethmüller S., Hartmann C., Möller M., Schmid G., Garnier M.G., Oelhafen P., Science, 297 (2002), 1533.10.1126/science.107624812202824Search in Google Scholar

[21] Li J., Li X., Zhai H.J., Wang L.S., Science, 299 (2003), 864.10.1126/science.107987912574622Search in Google Scholar

[22] Tiggesbäumker J., Köller L., Meiwes-Broer K.H., Liesbsch A., Phys. Rev. A, 48 (1993), 1749.10.1103/PhysRevA.48.R17499909898Search in Google Scholar

[23] Sieber C., Buttet J., Harbich W., Fèlix C., Mitrić R., Bonačić -Koutecký V., Phys. Rev. A, 70 (2004), 041201.10.1103/PhysRevA.70.041201Search in Google Scholar

[24] Ho J., Erwin K.M., Lineberger W.C., J. Chem. Phys., 93 (1990), 6987.10.1063/1.459475Search in Google Scholar

[25] Taylor K.J., Pettiette-Hall C.L., Cheshnovsky O., Smalley R.E., J. Chem. Phys., 96 (1992), 3319.10.1063/1.461927Search in Google Scholar

[26] Oviedo I., Palmer R.E., J. Chem. Phys., 117 (2002), 9548.10.1063/1.1524154Search in Google Scholar

[27] Xiao L., Tollberg B., Hu X., Wang L., J. Chem. Phys., 124 (2006), 114309.10.1063/1.217941916555890Search in Google Scholar

[28] Deka A., Deka R.C., J. Mol. Struct. (Theochem), 870 (2008), 83.10.1016/j.theochem.2008.09.018Search in Google Scholar

[29] Lecoultre S., Rydlo A., Buttet J., Fèlix C., Gilb S., Harbich W., J. Chem. Phys., 134 (2011), 184504-1.10.1063/1.358935721568518Search in Google Scholar

[30] Zhang H., Tian D., Comput. Mater. Sci., 42 (2008), 462.10.1016/j.commatsci.2007.08.009Search in Google Scholar

[31] Pal R., Wang L.M., Huang W., Wang L.S., Zeng X.C., J. Chem. Phys., 134 (2011), 054306-1.10.1063/1.353344321303119Search in Google Scholar

[32] Wang H.Q., Kuang X.Y., Li H.F., Phys. Chem. Chem. Phys., 12 (2010), 5156.10.1039/b923003c20358129Search in Google Scholar

[33] Olson R.M., Gordon M.S., J. Chem. Phys., 126 (2007), 214310.10.1063/1.274300517567199Search in Google Scholar

[34] Pyykko P., Chem. Soc. Rev., 37 (2008), 1967.10.1039/b708613j18762842Search in Google Scholar

[35] Assadollahzadeh B., Schwerdtfeger P., J. Chem. Phys., 131 (2009), 064306.10.1063/1.320448819691387Search in Google Scholar

[36] Furche F., Ahlrichs R., Weis P., Jacob C., Gilb S., Bierweiler T., Kappes M.M., J. Chem. Phys., 117 (2002), 6982.10.1063/1.1507582Search in Google Scholar

[37] Gilb S., Weis P., Furche F., Ahrichs R., Kappes M.M., J. Chem. Phys., 116 (2002), 4094.10.1063/1.1445121Search in Google Scholar

[38] Tafoughalt M.A., Samah M., Physica B, 407 (2012), 2014.10.1016/j.physb.2012.01.131Search in Google Scholar

[39] Wang L.M., Pal R., Huang W., Zeng X.C., Wang L.S., J. Chem. Phys., 132 (2010), 114306-1.10.1063/1.335604620331296Search in Google Scholar

[40] Lee H.M., Ge M., Sahu B.R., Tarakeshwar P., Kim K.S., J. Phys. Chem., 107 (2003), 9994.10.1021/jp034826+Search in Google Scholar

[41] Bonačić -Koutecký V., Burda J., Mltri R., Ge M., Zampella G., Fantucci P., J. Chem. Phys., 117 (2002), 3120.10.1063/1.1492800Search in Google Scholar

[42] Andriotis A.N., Mpourmpakis G., Broderick S., Rajan K., Datta S., Sunkara M., Menon M., J. Chem. Phys., 140 (2014), 094705-1.10.1063/1.486701024606374Search in Google Scholar

[43] Bishea G.A., Morse M.D., J. Chem. Phys., 95 (1991), 5646.10.1063/1.461639Search in Google Scholar

[44] Negishi Y., Nakamura Y., Nakajima A., J. Chem. Phys., 115 (2001), 3657.10.1063/1.1388036Search in Google Scholar

[45] Weis P., Welz O., Vollmer E., Kappes M.M., J. Chem. Phys., 120 (2003), 677.10.1063/1.163056815267902Search in Google Scholar

[46] Shayeghi A., Heard C.J., Johnston R.L., Schäfer R., J. Chem. Phys., 140 (2014), 054312-1.10.1063/1.486344324511945Search in Google Scholar

[47] Tafoughalt M.A., Samah M., Comput. Theor. Chem., 1033 (2014), 23.10.1016/j.comptc.2014.01.023Search in Google Scholar

[48] Kuang X.J., Wang X.Q., Liu G.B., J. Alloys. Compd., 570 (2013), 46.10.1016/j.jallcom.2013.03.172Search in Google Scholar

[49] Muniz-Miranda F., Menziani M.C., Pedone A., J. Phys. Chem. C, 119 (2015), 10766.10.1021/acs.jpcc.5b02655Search in Google Scholar

[50] Ranjan P., Dhail S., Venigalla S., Kumar A., Ledwani L., Chakraborty T., Mat. Sci- Pol., 33 (2016), 719.10.1515/msp-2015-0121Search in Google Scholar

[51] Ranjan P., Venigalla S., Kumar A., Chakraborty T., New. Front. Chem., 23 (2014), 111.Search in Google Scholar

[52] Ranjan P., Venigalla S., Kumar A., Chakraborty T., A theoretical analysis of bimetallic AgAun; (n=1-7) nano alloy clusters invoking DFT based descriptors, in: Chakraborty T., Ledwani L. (Eds.), Research Methodology in Chemical Sciences: Experimental and Theoretical Approaches, Apple Academic Press, USA, 2016, p. 337.Search in Google Scholar

[53] Ranjan P., Kumar A., Chakraborty T., Theoretical analysis: Electronic and optical properties of small Cu-Ag nano alloy clusters, in: Chakraborty T., Pandey A., Ranjan P. (Eds.), Computational Chemistry Methodology in Structural Biology and Material Sciences, Apple Academic Press, USA, 2018, p. 259.10.1201/9781315207544-9Search in Google Scholar

[54] Ranjan P., Chakraborty T., Kumar A., A theoretical study of bimetallic CuAun (n=1-7) nanoalloy clusters invoking conceptual DFT based descriptors, in: Haghi A. K., Pogliani L., Castro E. A., Balkose D., Mukbaniani O. V., Chia C. H. (Eds.), Applied Chemistry and Chemical Engineering, Vol. 4, Apple Academic Press, USA, ISBN-9781771885874, 2018 (In Press).10.1201/9781315366616-18Search in Google Scholar

[55] Ranjan P., Kumar A., Chakraborty T., AIP Conf. Proc., 1724 (2016), 020072-1-7.Search in Google Scholar

[56] Ranjan P., Kumar A., Chakraborty T., Material Today: Proceedings, 3 (2016), 1563.10.1016/j.matpr.2016.04.043Search in Google Scholar

[57] Ranjan P., Kumar A., Chakraborty T., Physical Sciences Reviews, (2017), DOI: 10.1515/psr-2016-0112.10.1515/psr-2016-0112Search in Google Scholar

[58] Hafner J., Wolverton C., Ceder G., MRS Bulletin, 31 (2006), 659.10.1557/mrs2006.174Search in Google Scholar

[59] Becke A. D., J. Chem. Phys., 98 (1993), 5648.10.1063/1.464913Search in Google Scholar

[60] Mielich B., Savin A., Stoll H., Preuss H., Chem. Phys. Lett., 157 (1989), 200.10.1016/0009-2614(89)87234-3Search in Google Scholar

[61] Jiang Z.Y., Lee K.H., Li S.T., Chu S.Y., Phys. Rev. B, 73 (2006), 235423.10.1103/PhysRevB.73.235423Search in Google Scholar

[62] Gaussian 03, Revision C02, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al. Gaussian, Inc.,Wallingford CT (2004).Search in Google Scholar

[63] Parr R.G., Yang W., Density functional theory of atoms and molecules, Oxford University Press, Oxford, 1989.Search in Google Scholar

[64] Majumder C., Kulshreshtha S.K., Phys Rev B: Condens. Matter Mater. Phys., 73 (2006), 155427.10.1103/PhysRevB.73.155427Search in Google Scholar

[65] Idrobo J.C., Walkosz W., Yip S.F., Oǧut S., Wang J.L., Jellinek J., Phys. Rev. B: Condens. Matter Mater. Phys., 76 (2007), 205422.10.1103/PhysRevB.76.205422Search in Google Scholar

[66] Xiao L., Wang L.C., Chem. Phys. Lett., 392 (2004), 452.10.1016/j.cplett.2004.05.095Search in Google Scholar

[67] Wang J., Wang G., Zhao J., Phys. Rev. B: Condens. Matter. Mater. Phys., 66 (2002), 035418.10.1103/PhysRevB.66.085408Search in Google Scholar

[68] Häkkinen H., Yoon B., Landman U., Li X., Zhai H.J., Wang L.S., J. Phys. Chem. A, 107 (2003), 6168.10.1021/jp035437iSearch in Google Scholar

[69] Soulè D.B.B., Ford M.J., Cortie M.B., J. Phys.: Condens. Matter., 18 (2006), 55.10.1088/0953-8984/18/1/004Search in Google Scholar

[70] Zhao Y.R., Zhang H.R., Qian Y., Duan X.C., Hu Y.F., Mol. Phys., 114 (2015), 784.10.1080/00268976.2015.1118571Search in Google Scholar

[71] Zhao Y.R., Qian Y., Zhang M.G., Hu Y.F., Mol. Phys., 113 (2015), 3598.10.1080/00268976.2015.1044480Search in Google Scholar

[72] Fabbi J.C., Langenberg J.D., Costello Q.D., Morse M.D., Karlsson L., J. Chem. Phys., 115 (2001), 7543.10.1063/1.1407273Search in Google Scholar

[73] Bauslicher C. W. JR, Langhoff S.R., Partridge H., J. Chem. Phys., 91 (1989), 2399.10.1063/1.456998Search in Google Scholar

[74] Beutel V., Krämer H.G., Bhale G.L., Kuhn M., Weyers K., Demtröder W., J. Chem. Phys., 98 (1993), 2699.10.1063/1.464151Search in Google Scholar

[75] Huber K.P., Herzberg G., Constants of Diatomic Molecules, New York: Van Nostrand Reinhold, 1979.10.1007/978-1-4757-0961-2_2Search in Google Scholar

[76] Leon I., Yang Z., Wang L.S., J. Chem. Phys., 138 (2013), 184304.10.1063/1.480347723676041Search in Google Scholar

[77] Wasendrup R., Hunt T., Schwerdfeger P., J. Chem. Phys., 112 (2000), 9356.10.1063/1.481556Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo