1. bookVolume 38 (2020): Issue 1 (March 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Synthesis, photophysical properties and electrochemical polymerization of a new blue fluorescent compound based on 3,4-ethylenedioxythiophene moiety

Published Online: 08 May 2020
Volume & Issue: Volume 38 (2020) - Issue 1 (March 2020)
Page range: 151 - 158
Received: 20 Nov 2018
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

New monomer, 4,4’-[(2,3-dihydrothieno[3,4-b][1,4]diorin-5-yl)vinyl]-1,1’-biphenyl (BPE), was synthesized, characterized and polymerized electrochemically via a potentiostatic method. The corresponding polymer poly(4,4’-[(2,3-dihydrothieno[3,4-b][1,4] diorin-5-yl)vinyl]-1,1’-biphenyl) (PBPE) obtained as a thin-layer film, was characterized by cyclic voltammetry, X-ray photoelectron spectroscopy, infrared spectroscopy and UV-Vis spectroscopy. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the obtained polymer were determined from cyclic voltammograms as –4.89 eV and –3.81 eV, respectively. Its optical and electrochemical band gaps were calculated, and found to be 1.08 eV and 1.49 eV, respectively. PBPE can be used as a donor material in bilayer organic photovoltaic solar cells having PCBM as acceptor material.

Keywords

[1] Forrest S.R., Nature, 428 (2004), 911.10.1038/nature0249815118718Search in Google Scholar

[2] Shinar R., Shinar J., Organic Electronics in Sensors and Biotechnology, McGraw-Hill, New York, 2009.Search in Google Scholar

[3] Chirvase D., Chiguvare Z., Knipper M., Parisi J., Dyakonov V., Hummelen J.C., J. Appl. Phys., 93 (2003), 3376.10.1063/1.1545162Search in Google Scholar

[4] Tang C.W., Appl. Phys. Lett., 48 (1986), 183.10.1063/1.96937Search in Google Scholar

[5] Bundgaard E., Krebs F.C., Sol. Energ. Mat. Sol. C., 91 (2007), 954.10.1016/j.solmat.2007.01.015Search in Google Scholar

[6] Dennler G., Scharber M.C., Brabec C.J., Adv. Mater., 21 (2009), 1323.10.1002/adma.200801283Search in Google Scholar

[7] Scharber M.C., Mühlbacher D., Koppe M., Denk P., Waldauf C., Heeger A.J., Brabec C.J., Adv. Mater., 18 (2006), 789.10.1002/adma.200501717Search in Google Scholar

[8] Hou J., Guo X., Active Layer Materials for Organic Solar Cells, in: Choy W.C.H. (Ed.), Organic Solar Cells, Green Energy and Technology, Springer-Verlag, London, 2013, p. 17.10.1007/978-1-4471-4823-4_2Search in Google Scholar

[9] Hudhomme P., EPJ Photovoltaics, 4 (2013), 40401.10.1051/epjpv/2013020Search in Google Scholar

[10] Kaveeta P.J., Prasad R.G., Venkata S.J., Aparna R.S., Phani A.R., Nano. Biomed. Eng., 4 (2012), 144.Search in Google Scholar

[11] Burroughes J.H., Bradley D.D.C., Brown A.R.., Marks R.N., MacKay K., Friend R.H., Burns P.L., Holmes A.B., Nature, 347 (1990), 539.10.1038/347539a0Search in Google Scholar

[12] Sariciftci N.S., Braun D., Zhang C., Appl. Phys. Lett., 62 (1993), 585.10.1063/1.108863Search in Google Scholar

[13] Wong W.W.H., Banal J.L., Poly(arylene-vinylene)s, in: Kobayashi S., Müllen K. (Eds.), Encyclopedia of Polymeric Nanomaterials, Springer, Berlin, 2015, p. 1.10.1007/978-3-642-29648-2_9Search in Google Scholar

[14] Spanggaard H., Krebs F.C., Sol. Energ. Mat. Sol. C., 83 (2004), 125.10.1016/j.solmat.2004.02.021Search in Google Scholar

[15] Colladet K., Fourier S., Cleij T.J., Lutsen L., Gelan J., Vanderzande D., Huong-Nguyen L., Neugebauer H., Sariciftci S., Aguirre A., Janssen G., Goovaerts E., Macromolecules, 40 (2007), 65.10.1021/ma061760iSearch in Google Scholar

[16] Cho N.S., Park J.-H., Lee S.-K., Lee J., Shim H.-K., Park M.-J., Hwang D.-H., Jung B.-J., Macromolecule, 39 (2006), 177.10.1021/ma051784+Search in Google Scholar

[17] Thompson B.C., Kim Y.-G., Reynolds J.R., Macromolecules, 38 (2005), 5359.10.1021/ma0505934Search in Google Scholar

[18] Sun X.B., Zhou Y.H., Wu W.C., Liu Y.Q., Tian W.J., Yu G., Qiu W.F., Chen S.Y., Zhu D.B., J. Phys. Chem. B., 110 (2006), 7702.10.1021/jp060128oSearch in Google Scholar

[19] Zheng M., Sarker A.M., Gürel E.E., Lahti P.M., Karasz F.E., Macromolecules, 33 (2000), 7426.10.1021/ma000865xSearch in Google Scholar

[20] Sung-Ho J., Kim-Yeon K., Young J.K., Lee K., Gal Y.-S., J. Am. Chem. Soc., 126 (2004), 2474.10.1021/ja036955+Search in Google Scholar

[21] Yamato H., Ohwa M., Wernet W., J. Electroanal. Chem., 397 (1995), 163.10.1016/0022-0728(95)04156-8Search in Google Scholar

[22] Strakosas X., Sessolo M., Hama A., Rivnay J., Stavrinidou E., Malliaras G.G., Owens R.M., J. Mater. Chem. B, 2 (2014), 2537.10.1039/C3TB21491E32261421Search in Google Scholar

[23] Apperloo J.J., Groenendaal L.B., Verheyen H., Jayakannan M., Janssen R.A.J., Dkhissi A., Beljonne D., Lazzaroni R., Brèdas J.L., Chemistry: Eur. J., 8 (2002), 2384.10.1002/1521-3765(20020517)8:10<2384::AID-CHEM2384>3.0.CO;2-LSearch in Google Scholar

[24] Turbiez M., Frère P., Roncali J., J. Org. Chem., 68 (2003), 5357.10.1021/jo0345493Search in Google Scholar

[25] Groenendaal L., Jonas F., Freitag D., Pielartzik H.J., Reynolds R., Adv. Mater., 12 (2000), 481.10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-CSearch in Google Scholar

[26] Li W., Michinobu T., Polym. Chem.-UK, 7 (2016), 3165.10.1039/C6PY00381HSearch in Google Scholar

[27] Sotzing G.A., Thomas C.A., Reynolds J.R., Macromolecules, 31 (1998), 3750.10.1021/ma971290fSearch in Google Scholar

[28] Martens H.C.F., Blom P.W.M., Schoo H.F.M., Phys. Rev. B, 61 (2000), 7489.10.1103/PhysRevB.61.7489Search in Google Scholar

[29] Tajima K., Suzuki Y., Hashimoto K., J. Phys. Chem. C, 112 (2008), 8507.10.1021/jp802688sSearch in Google Scholar

[30] Nguyen D.N., Yoon H., Polymers-Basel, 8 (2016), 118.10.3390/polym8040118Search in Google Scholar

[31] Babu K.F., Senthilkumar R., Noel M., Kulandainathan M.A., Synth. Met., 159 (2009), 1353.10.1016/j.synthmet.2009.03.005Search in Google Scholar

[32] Alessi P.J., Carte E.C., Fairchil M.D., Hunt R.W.G., McCamy C.S., Kranicz B., Moore J.R., Morren L., Nobbs J.H., Ohno Y., Pointer M.R., Rich D.C., Robertson A.R., Schanda J.D., Sève R., Trezona P.W., Witt K., Yaguchi H., CIE 15: Technical Report Colorimetry, 3rd ed., Washington, 2004.Search in Google Scholar

[33] Fuchigami T., Atobe M., Inagi S., Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices, John Wiley & Sons, 2014.10.1002/9781118670750Search in Google Scholar

[34] Hu B., Lv X., Sun J., Bian G., Ouyang M., Fu Z., Wang P., Zhang C., Org. Electron., 14 (2013), 1521.10.1016/j.orgel.2013.03.024Search in Google Scholar

[35] Ferraris J.P., Harilon T.R., Polymer, 30 (1989), 1319.10.1016/0032-3861(89)90054-2Search in Google Scholar

[36] McCreery R.L., in: Kissinger P.T., Heineman W.R. (Ed.), Laboratory Techniques in Electroanalytical Chemistry, Dekker, New York, 1996, Chap. 10.Search in Google Scholar

[37] McCreery R.L., in: Bard A.J. (Ed.), Electroanalytical Chemistry, Dekker, New York, 1991, p. 221.Search in Google Scholar

[38] Pérez Guarìn S.A., Skene W.G., Mater. Lett., 61 (2007), 5102.10.1016/j.matlet.2007.04.015Search in Google Scholar

[39] Güneş A., Cihaner A., Önal A.M., Electrochim. Acta., 89 (2013), 339.10.1016/j.electacta.2012.11.108Search in Google Scholar

[40] Onoda M., Park D.H., Nakayama H., Amakawa K., Yoshino K., IEE Japan, 111-A (1991), 9.10.1541/ieejfms1990.111.9_835Search in Google Scholar

[41] Djurovich P.I., Mayo E.I., Forrest S.R., Thompson M.E., Org. Electron., 10 (2009), 515.10.1016/j.orgel.2008.12.011Search in Google Scholar

[42] Ahmida M.M., Eichborn S.H., ECS T., 25 (2010), 1.10.1149/1.3314449Search in Google Scholar

[43] Bredas J.L., Silbey R., Boudreux D.S., Chance R.R., J. Am. Chem. Soc., 105 (1983), 6555.10.1021/ja00360a004Search in Google Scholar

[44] Friend R.H., Bradley D.D.C., Townsend P.D., J. Phys. D: Appl. Phys., 20 (1987), 1367.10.1088/0022-3727/20/11/005Search in Google Scholar

[45] Yoshino K., Takiguchi T., Hayashi S., Park D.H., Sugimoto R.I., Jpn. J. Appl. Phys., 25 (1986), 881.10.1143/JJAP.25.881Search in Google Scholar

[46] Turbiez M., Frère P., Blanchard P., Roncali J., Tetrahedron Lett., 41 (2000), 5521.10.1016/S0040-4039(00)00888-1Search in Google Scholar

[47] Thompson B.C., Fréche J.M., Angew. Chem. Int. Ed., 47 (2008), 58.10.1002/anie.20070250618041798Search in Google Scholar

[48] Schulz G.L., Urdanpilleta M., Fitzner R., Brier E., Mena-Osteritz E., Reinold E., Bäuerle P., Beilstein J. Nanotechnol., 4 (2013), 680.10.3762/bjnano.4.77381762624205464Search in Google Scholar

[49] Wang T., Pearson A.J., Lidzey D.G., J. Mater. Chem. C., 1 (2013), 7266.10.1039/c3tc31235fSearch in Google Scholar

[50] Bijleveld J.C., Shahid M., Gilot J., Wienk M.M., Janssen R.A.J., Adv. Funct. Mater., 19 (2009), 3262.10.1002/adfm.200900412Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo