1. bookVolume 37 (2019): Issue 3 (September 2019)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Room temperature ferromagnetic behavior in the nanocrystals of Fe doped ZnO synthesized by soft chemical route

Published Online: 18 Oct 2019
Volume & Issue: Volume 37 (2019) - Issue 3 (September 2019)
Page range: 364 - 372
Received: 24 Jul 2017
Accepted: 29 Dec 2018
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

In the present study, nanocrystalline undoped and Fe (5 wt.%) doped ZnO powder has been synthesized by soft chemical route. The structural, nano/microstructural, vibrational and magnetic properties of these samples have been studied as a function of calcination temperature (400 °C to 1100 °C). X-ray diffraction analysis of Fe doped ZnO powder has shown the major nanocrystalline wurtzite (ZnO) phase and the minor cubic spinel-like secondary nanocrystalline phase at 700 °C. At calcination temperature of 700 °C, the magnetization and coercivity have been enhanced in Fe doped ZnO. As the calcination temperature increased to 1100 °C, the major phase of ZnO and minor cubic spinel-like secondary phase turned into bulk in doped ZnO. Interestingly, the reduced magnetization and zero coercivity have been observed in this case. These changes are attributed to the conversion of secondary nanocrystalline ferromagnetic spinel phase to its bulk paramagnetic phase. The degree of inversion i.e. the occupancy of both sites with different symmetry by ferric ions is proposed to be solely responsible for the unusual behavior.

Keywords

[1] Dietl T., Ohno H., Matsukura F., Cibert J., Ferrand D., Science, 287 (2000), 1019.10.1126/science.287.5455.101910669409Search in Google Scholar

[2] Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., Molnar Von S., Roukes M.L., Chichelkanova A.Y., Treger D.M., Science, 294 (2001), 1488.10.1126/science.106538911711666Search in Google Scholar

[3] Linhua X, Xiangyin L., J. Cryst. Growth, 312 (2010), 851.10.1016/j.jcrysgro.2009.12.062Search in Google Scholar

[4] Liu H., Yang J., Zhang Y., Yang L., Wei M., Ding X., J. Phys. Condens. Mater., 21 (2009), 145803.10.1088/0953-8984/21/14/14580321825347Search in Google Scholar

[5] Liu H., Yang J., Zhang Y., Wang Y., Wie M., Mater. Chem. Phys., 112 (2008), 1021.10.1016/j.matchemphys.2008.07.004Search in Google Scholar

[6] Bouloudenine M., Viart N., Colis S., Dinia A., Catal. Today, 113 (2006), 240.10.1016/j.cattod.2005.11.073Search in Google Scholar

[7] Zhang Y., Xie E., Appl. Phys. A, 99 (2010), 955.10.1007/s00339-010-5703-3Search in Google Scholar

[8] Gao D., Zhang Z., Fu J., Xu Y., Qi J., Xue D., J. Appl. Phys., 105 (2009), 113928.10.1063/1.3143103Search in Google Scholar

[9] Xu X., Xu C., Dai J., Hu J., Li F., Zhang S., J. Phys. Chem. C, 116 (2012), 8813.10.1021/jp3014749Search in Google Scholar

[10] Kittilsved K.R., Liu W.K., Gamelin D.R., Nature Mater., 5 (2006), 291.10.1038/nmat161616565711Search in Google Scholar

[11] Coey J.M.D., Venkatesan M., Fitzgerald C.B., Nature Mater., 4 (2005), 173.10.1038/nmat131015654343Search in Google Scholar

[12] Park S.Y., Kim P.J., Lee Y., Shin S.W., Kim T.H., Kang J., Rhee J.Y., Adv. Mater., 19 (2007), 3496.10.1002/adma.200602144Search in Google Scholar

[13] Lee H.J., Park C.H., Jeong S.Y., Yee K.J., Cho C.R., Jung M.H., Chadi D., J. Appl. Phys. Lett., 88 (2006), 062504.10.1063/1.2171789Search in Google Scholar

[14] Blasco J., Bartolomé F.L., García M., García J., J. Mater. Chem., 16 (2006), 2282.10.1039/B518418EOpen DOISearch in Google Scholar

[15] Pan H., Yi J.B., Shen L., Wu R.Q., Yang J.H., Lin J.Y., Feng Y.P, Ding J., Van L.H., Yin J.H., Phys. Rev. Lett., 99 (2007), 127201.10.1103/PhysRevLett.99.12720117930547Search in Google Scholar

[16] Nagare B.J., Chacko S., Kanhere D.G., J. Phys. Chem., 114 (2010), 2689.10.1021/jp910594m20121241Search in Google Scholar

[17] Jin Z., Fukumura T., Kawasaki M., Ando K., Saito H., Sekiguchi T., Yoo Y.Z., Murakami M., Matsumoto Y., Hasegawa T., Koinuma H., Appl. Phys. Lett., 78 (2001), 3824.10.1063/1.1377856Search in Google Scholar

[18] Bilecka I., Luo L., Djerdj I., Rossell M.D., Jagodic M., Jaglicic Z., Masubuchi Y., Kikkawa S., Niederberger M., J. Phys. Chem. C, 115 (2011), 1484.10.1021/jp108050wSearch in Google Scholar

[19] Fan L., Dongmei J., Xueming M., Physica B, 405 (2010), 1466.10.1016/j.physb.2009.09.057Search in Google Scholar

[20] Mandal S.K., Das A.K., Nath T.K., Karmakar D., Appl. Phys Letts., 89 (2006), 144105.10.1063/1.2360176Search in Google Scholar

[21] Wang X.C., Mi W.B., Kuang D.F., Appl. Surf. Sci., 256 (2010), 1930.10.1016/j.apsusc.2009.10.040Search in Google Scholar

[22] Mishra A.K., Das D., Mater. Sci. Eng. B., 171 (2010), 5.Search in Google Scholar

[23] Liu C., Meng D., Pang H., Wu X., Xie J., Yu X., Chen L., Liu X., J. Magn. Magn. Mater., 324 (2012), 3356.10.1016/j.jmmm.2012.05.054Search in Google Scholar

[24] Wang D., Chen Z.Q., Wang D.D., Gong J., Cao C.Y., Tang Z., Huang L.R., J. Magn. Magn. Mater., 322 (2010), 3642.10.1016/j.jmmm.2010.07.014Search in Google Scholar

[25] Goya G.F., Berquó T.S., Fonseca F.C., J. App. Phys., 94 (2003), 3520.10.1063/1.1599959Search in Google Scholar

[26] Srivastava A.K., Deepa M., Bahadur N., Goyat M.S., Mater. Chem. Phys., 114 (2009), 194.10.1016/j.matchemphys.2008.09.005Search in Google Scholar

[27] Srivastava A., Gunjikar V.G., Sinha A.P.B., Thermochi. Acta, 117 (1987), 201.10.1016/0040-6031(87)88115-7Search in Google Scholar

[28] Ekhande L.V., Dhas V.V., Kolekar Y.D., Ghosh K., Date S.K., Patil S.I., Phys. Status Solidi B, 250 (2013), 1389.10.1002/pssb.201248567Search in Google Scholar

[29] Sun L., Shao R., Tang L., Chen Z., J. Alloy. Compd., 564 (2013), 55.10.1016/j.jallcom.2013.02.147Search in Google Scholar

[30] Li J., Huang Z., Wu D., Yin G., Liao X., Gu J., Han D., J. Phys. Chem. C., 114 (2010), 1586.10.1021/jp907107sSearch in Google Scholar

[31] Jing Z.H., Mater. Lett., 60 (2006), 2217.10.1016/j.matlet.2005.12.109Open DOISearch in Google Scholar

[32] Rao C.N.R., Chemical applications of infrared spectroscopy, Academic Press, New York – London, 1963. 1.Search in Google Scholar

[33] Waldron R.D., Phys. Rev., 99 (1955), 1727.10.1103/PhysRev.99.1727Search in Google Scholar

[34] López F.A., López-Delgado A., Martín de Vidales J.L., Vila E., J. Alloy. Compd., 265 (1998), 291.10.1016/S0925-8388(97)00282-XSearch in Google Scholar

[35] Rao G.V.S., Rao C.N.R., Ferraro R., Appl. Spectrosc., 24 (1970), 436.10.1366/000370270774371426Open DOISearch in Google Scholar

[36] Labde B.K., Sable M.C., Shamkuwar N.R., Mater. Lett., 57 (2003), 1651.10.1016/S0167-577X(02)01046-7Search in Google Scholar

[37] Chinnasamy C.N., Narayanasamy A., Ponpandian N., Chattopadhyay K., Guérault H., Greneche J.M., J. Phys.: Condens. Mater., 12 (2000), 7795.10.1088/0953-8984/12/35/314Search in Google Scholar

[38] Li F.S., Wang L., Wang J.B., Zhou Q.G., Zhou X.Z., Kunkel H.P., Williams G., J. Magn. Magn. Mater., 268 (2004), 332.10.1016/S0304-8853(03)00544-4Search in Google Scholar

[39] Tung L.D., Kolesnichenko V., Caruntu G., Caruntu D., Remond Y., Golub V.O., O’Connor C J., Spinu L., J. Magn. Magn. Mater., 319 (2002), 116.10.1016/S0921-4526(02)01114-6Search in Google Scholar

[40] Beltrán J.J., Barrero C.A., Punnoose A., Phys. Chem. Chem. Phys., 17 (2015), 15284.10.1039/C5CP01408E25994044Search in Google Scholar

[41] Quesada A., García M.A., Andrés M., Hernando A., Fernández J.F., J. Appl. Phys., 100 (2006), 113909.10.1063/1.2399884Search in Google Scholar

[42] Hastings J.M., Corliss M., Rev. Mod. Phys., 25 (1953), 114.10.1103/RevModPhys.25.114Open DOISearch in Google Scholar

[43] Schiessl W., Potzel W., Karzel H., Steiner M., Kalvius G. M., Martin A., Krause M. K., I. Halevy, Gal J., Schäfer W., Will G., Hillberg M., Wäppling R., Phys. Rev. B., 53 (1996), 9143.10.1103/PhysRevB.53.91439982416Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo