1. bookVolume 36 (2018): Issue 3 (September 2018)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Synthesis and density-functional-theory calculations of electronic band structure of hollow sphere WS2

Published Online: 02 Nov 2018
Volume & Issue: Volume 36 (2018) - Issue 3 (September 2018)
Page range: 409 - 418
Received: 17 May 2017
Accepted: 15 Mar 2018
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

A novel and low-cost synthesis of tungsten disulfide (WS2) transition metal dichalcogenide was carried out via gas-solid reaction in a horizontal quartz reactor. In this process, the prepared hollow WO3 precursor was sulfided with CS2 at 550 °C at different durations under N2 gas atmosphere. The as-prepared WS2 samples were formed by substitution of O by S during the sulfidation process. The characterization of these samples was performed employing X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET) specific surface area, X-ray photoelectron spectroscopy (XPS) and UV-Vis absorption spectroscopy. The characterization results showed that the as-prepared WS2 samples were of high quality and purity. No significant differences were observed in various WS2 samples synthesized during different sulfidation periods. The calculated results obtained from the density functional theory (DFT) indicate that WS2 has an indirect band gap of ca. 1.56 eV, which is in agreement with experimental band gap of ca. 1.50 eV. Combining the experimental and DFT results suggests that the novel method used in the synthesis of WS2 has a potential application for large scale production. The obtained WS2 are of high quality and can be implemented in photocatalysis, catalysis, photovoltaics, optoelectronic devices and photosensor devices.

Keywords

[1] Chen S.Y., Zheng C., Fuhrer M.S., Yan J., Nano. Lett., 15 (2015), 2526.10.1021/acs.nanolett.5b0009225719859Search in Google Scholar

[2] Wang Y., Cong C., Yang W., Shang J., Peimyoo N., Chen Y., Kang J., Wang J., Huang W., Yu T., Nano Res., (2015), 1.Search in Google Scholar

[3] Wang Q.H., Kalantar-Zadeh K., Kis A., Coleman J.N., Strano M.S., Nat. Nanotechnol., 7 (2012), 699.10.1038/nnano.2012.19323132225Open DOISearch in Google Scholar

[4] Zhan Y., Liu Z., Najmaei S., Ajayan P.M., Lou J., Small, 8 (2012), 966.10.1002/smll.20110265422334392Search in Google Scholar

[5] Zeng H., Dai J., Yao W., Xiao D., Cui X., Nat. Nanotechnol., 7 (2012), 490.10.1038/nnano.2012.9522706701Open DOISearch in Google Scholar

[6] Ghoreishi S., Meshkat S., Dadkhah A., Mater. Res. Bull., 45 (2010), 584.10.1016/j.materresbull.2010.01.020Open DOISearch in Google Scholar

[7] Chou S.S., Huang Y.K., Kim J., Kaehr B., Foley B.M., Lu P., Dykstra C., Hopkins P.E., Brinker C.J, Huang J., J. Am. Chem. Soc., 137 (2015), 1742.10.1021/ja510714525608577Search in Google Scholar

[8] Lukowski M.A., Daniel A.S., English C.R., Meng F., Forticaux A., Hamers R. J., Jin S., Energ. Environ. Sci., 7 (2014), 2608.10.1039/C4EE01329HSearch in Google Scholar

[9] Park J., Lee W., Choi T., Hwang S. H., Myoung J.M, Jung J. H, Kim S. H, Kim H., Nanoscale, 7 (2015), 1308.10.1039/C4NR04292A25361429Search in Google Scholar

[10] Elías A. L., Perea-López N., CastroBeltrán A., Berkdemir A., Lv R., Feng S., Long A. D., Hayashi T., Kim Y. A., Endo M., ACS Nano, 7 (2013), 5235.10.1021/nn400971k23647141Search in Google Scholar

[11] Notley S.M., J. Colloid Interf. Sci., 396 (2013), 160.10.1016/j.jcis.2013.01.03523484764Search in Google Scholar

[12] Chen D., Tang K., Shen G., Sheng J., Fang Z., Liu X., Zheng H., Qian Y., Mater. Chem. Phys., 82 (2003), 206.10.1016/S0254-0584(03)00206-2Open DOISearch in Google Scholar

[13] Ellmer K., Phys. Status Solidi B, 245 (2008), 1745.10.1002/pssb.200879545Search in Google Scholar

[14] Hou X., Shan C., Choy K.L., Surf. Coat. Technol., 202 (2008), 2287.10.1016/j.surfcoat.2007.08.010Search in Google Scholar

[15] Margolin A., Deepak F., Popovitz-Biro R., Bar-Sadan M., Feldman Y., Tenne R., Nanotechnology, 19 (2008), 095601.10.1088/0957-4484/19/9/09560121817676Search in Google Scholar

[16] Wu J., Fu X., Mater. Lett., 61 (2007), 4332.10.1016/j.matlet.2007.01.099Search in Google Scholar

[17] Wiesel I., Arbel H., Albu-Yaron A., PopovitzBiro R., Gordon J.M., Feuermann D., Tenne R., Nano Res., 2 (2009), 416.10.1007/s12274-009-9034-7Open DOISearch in Google Scholar

[18] Wen Y., Zhang H., Zhang S., Nanoscale, 6 (2014), 13090.10.1039/C4NR03220ASearch in Google Scholar

[19] Choi S.H., Boo S.J., Lee J. H., Kang Y.C., Sci. Rep.-UK, 4 (5755) (2014), 4.10.1038/srep05755414867225169439Search in Google Scholar

[20] James D., Zubkov T., J. Photoch. Photobio. A, 262 (2013), 45.10.1016/j.jphotochem.2013.04.015Search in Google Scholar

[21] Cao S., Liu T., Hussain S., Zeng W., Pan F., Peng X., J. Mater. Sci.-Mater. El., 26 (2015), 809.10.1007/s10854-014-2468-zSearch in Google Scholar

[22] Thangaraja A., Shinde S.M., Kalita G., Tanemura M., Mater. Lett., 156 (2015), 156.10.1016/j.matlet.2015.05.020Search in Google Scholar

[23] Yang J., Voiry D., Ahn S.J., Kang D., Kim A.Y., Chhowalla M., Shin H.S., Angew. Chem. Int. Edit., 52 (2013), 13751.10.1002/anie.20130747524346949Open DOISearch in Google Scholar

[24] Chhowalla M., Shin H.S., Eda G., Li L.J., Loh K.P., Zhang H., Nat. Chem., 5 (2013), 263.10.1038/nchem.158923511414Open DOISearch in Google Scholar

[25] Morrish R., Haak T., Wolden C.A., Chem. Mater., 26 (2014), 3986.10.1021/cm501566hOpen DOISearch in Google Scholar

[26] Tehrani M., Luhrs C., Al-Haik M., Trevino J., Zea H., Nanotechnology, 22 (2011), 285714.10.1088/0957-4484/22/28/28571421659689Open DOISearch in Google Scholar

[27] Cao S., Liu T., Hussain S., Zeng W., Peng X., Pan F., Mater. Lett., 129 (2014), 205.10.1016/j.matlet.2014.05.013Search in Google Scholar

[28] Sun S., Zou Z., Min G., Mater. Chem. Phys., 114 (2009), 884.10.1016/j.matchemphys.2008.10.061Search in Google Scholar

[29] Zhao X., Cheung T.L., Zhang X., Ng D.H., Yu J., J. Am. Ceram. Soc., 89 (2006), 2960.Search in Google Scholar

[30] Yu J., Qi L., Cheng B., Zhao X., J. Hazard. Mater., 160 (2008), 621.10.1016/j.jhazmat.2008.03.04718423861Search in Google Scholar

[31] Sing K.S., Pure Appl. Chem., 57 (1985), 603.10.1351/pac198557040603Search in Google Scholar

[32] Segall M., Lindan P.J., Probert M.A., Pickard C., Hasnip P., Clark S., Payne M., J. Phys. Condens. Mat., 14 (2002), 2717.10.1088/0953-8984/14/11/301Open DOISearch in Google Scholar

[33] Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 77 (1996), 3865.10.1103/PhysRevLett.77.386510062328Search in Google Scholar

[34] Perdew J. P., Wang Y., Phys. Rev. B, 45 (1992), 13244.10.1103/PhysRevB.45.13244Open DOISearch in Google Scholar

[35] Hou Y., Laursen A.B., Zhang J., Zhang G., Zhu Y., Wang X., Dahl S., Chorkendorff I., Angew. Chem., Int. Edit., 52 (2013), 3621.10.1002/anie.20121029423427144Open DOISearch in Google Scholar

[36] Yang L., Zhou H., Fan T., Zhang D., PCCP, 16 (2014), 6810.10.1039/c4cp00246f24599528Search in Google Scholar

[37] Wu Z., Wang D., Zan X., Sun A., Mater. Lett., 64 (2010), 856.10.1016/j.matlet.2010.01.040Search in Google Scholar

[38] Zong X., Han J., Ma G., Yan H., Wu G., Li C., J. Phys. Chem. C, 115 (2011), 12202.10.1021/jp2006777Search in Google Scholar

[39] Jin J., Yu J., Guo D., Cui C., Ho W., Small, 11 (2015), 5262.10.1002/smll.20150092626265014Search in Google Scholar

[40] Rodriguez Gutierrez H., Perea-López N., Elías A. L., Berkdemir A., Wang B., Lv R., López-Urías F., Crespi V., Terrones H., Terrones M., J. APS, March Meeting Abstracts, (2013), 5007.Search in Google Scholar

[41] Wilson J., Yoffe A., Adv. Phys., 18 (1969), 193.10.1080/00018736900101307Search in Google Scholar

[42] Kuc A., Zibouche N., Heine T., Phys. Rev. B, 83 (2011), 245213.10.1103/PhysRevB.83.245213Search in Google Scholar

[43] Sayan R., Peter B., Sol. Energ. Mat. Sol. C., 174 (2018), 370.Search in Google Scholar

[44] Forti S., Rossi A., Büch H., Cavallucci T., Bisio F., Sala A., Menteş T. O., Locatelli A., Magnozzi M., Canepa M., Müller K., Link S., Starke U., Tozzinib V., Colett C., Nanoscale, 9 (2017), 16412.10.1039/C7NR05495E29058741Search in Google Scholar

[45] Kumar A., Ahluwalia P., Eur. Phys. J. B, 85 (2012), 1.10.1140/epjb/e2012-30070-xSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo