Open Access

Existence Results For A Class Of Nonlinear Degenerate Elliptic Equations

  
Jan 24, 2020

Cite
Download Cover

In this paper we are interested in the existence of solutions for Dirichlet problem associated with the degenerate nonlinear elliptic equations

{-div[𝒜(x,u)ω1+𝒝(x,u,u)ω2]=f0(x)-j=1nDjfj(x)inΩ,u(x)=0onΩ,\left\{ {\matrix{ { - {\rm{div}}\left[ {\mathcal{A}\left( {x,\nabla u} \right){\omega _1} + \mathcal{B}\left( {x,u,\nabla u} \right){\omega _2}} \right] = {f_0}\left( x \right) - \sum\limits_{j = 1}^n {{D_j}{f_j}\left( x \right)\,\,{\rm{in}}} \,\,\,\,\,\Omega ,} \hfill \cr {u\left( x \right) = 0\,\,\,\,{\rm{on}}\,\,\,\,\partial \Omega {\rm{,}}} \hfill \cr } } \right.

in the setting of the weighted Sobolev spaces.