Open Access

Review of road selection methods for the purpose of multiscale mapping

 and   
Aug 16, 2025

Cite
Download Cover

Figure 1.

Literature search scheme (inspired by the Prisma searching model)Source: own elaboration
Literature search scheme (inspired by the Prisma searching model)Source: own elaboration

Figure 2.

Distribution of types of methods appearing in selected publicationsSource: own elaboration
Distribution of types of methods appearing in selected publicationsSource: own elaboration

Information about most important characteristics of the research undertaken concerning road network selection_Selected references considered in this paper are included, as many of the works lack quantitative results’ evaluation

Author Year Approach Source scale Target scale Method Major metric Major purpose
Xiao et al. 2024 ML 1:100 000 1:200 000 Accuracy database generalization
MLSU-TAGCN 81.40%
MLSU-GCN 74.80%
MLSU-GAT 75.51%
MLSU-GraphSAGE 80.80%
Selection-4Fs 71.20%
Selection-22Fs 78.40%
Tang et al. 2024 ML 1:10 000 F1-score database generalization
1:50 000 GCN with functional semantic features 89.74%
1:200 000 82.70%
Zheng et al. 2024 ML 1:250 000 1:1 000 000 Accuracy database generalization
HAN 75.35%
Karsznia et al. 2024a ML 1:250 000 1:500 000 Accuracy general geographic map
DT 81.25%
RF 84.38%
SVM 84.38%
DTGA 90.00%
NN 81.88%
Guo et al. 2023 ML 1:10 000 1:50 000 F1 Score database generalization
GNN 92.10%
AHP 88.00%
Lyu et al. 2022 Graph 1:50 000 1:100 000 Accuracy database generalization
Road-path selection constrained by settlements 86.00%
Pung et al. 2022 Graph 1:10 000 „Large-scale” Selected-Source Correlation urban road generalization
Functional node elimination Pearson (ρ) = 0.964
Spearman (R) = 0.911
Karsznia et al. 2022 ML 1:250 000 Accuracy database generalization
1:500 000 DT 84.46%
DTGA 83.33%
RF 84.96%
1:1 000 000 DT 99.18%
DTGA 99.44%
RF 99.34%
Wu et al. 2022 Mesh 1:10 000 1:50 000 Shape similarity overlap topographic map
Direct pair merging 100%
Iterative area elimination 100%
Zheng et al. 2021 ML 1:10 000 1:100 000 Accuracy database generalization
MLP 85.83%
JK-GAT 88.12%
Res-GAT 87.88%
Dense-GAT 87.41%
Han et al. 2020 Stroke 1:5 000 1:200 000 Common stroke ratio database generalization
AHP 89%
Yu et al. 2020 Stroke Unknown Maximum similarity navigation
1:5 000 Traffic Flow Radical Law Strokes 61.15%
1:25 000 65.86%
1:50 000 90.95%
1:5 000 Traffic Flow Pair Strokes 61.61%
1:25 000 65.58%
1:50 000 90.95%
Li et al. 2020 Mesh, Stroke 1:10 000 1:50 000 Maximum similarity topographic map
Mesh elimination 89.52%
Stroke-edge elimination 91.64%
Park, Huh 2019 ML 1:5 000 1:25 000 Matching ratio topographic map
Logistic Regression 81.66%
Zhang et al. 2017 Stroke 1:10 000 1:50 000 Accuracy database generalization
Stroke generation with weighted Voronoi diagrams 88.80%
Zhou, Li 2017 ML Accuracy database generalization
1:20 000 1:50 000 MP 80.45%
SVM 77.05%
BLR 80.90%
1:100 000 MP 79.90%
SVM 81.10%
BLR 80.65%
1:200 000 MP 91.55%
SVM 92.90%
BLR 92.35%
1:50 000 1:250 000 MP 83.20%
SVM 82.70%
BLR 83.10%
Weiss, Weibel 2014 Stroke 1:10 000 1:200 000 Mean improvement (vs. Basic) database generalization
Enhanced stroke generation 67.88%
Benz, Weibel 2014 Stroke, Mesh 1:10 000 1:50 000 Satisfaction of hard constraints database generalization
Extended stroke–mesh combination 100%
Zhou, Li 2014 ML 1:20 000 Accuracy map updates
1:50 000 BPNN 82.4%
1:100 000 87%
1: 200 000 98.6%
Li et al. 2012 Stroke, Mesh Accuracy database generalization
1:20 000 1:50 000 Stroke generation 84.7%
1:100 000 76.7%
1:200 000 68.5%
1:50 000 1:250 000 77.3%
1:20 000 1:50 000 Mesh density 67.7%
1:100 000 63.7%
1:200 000 61.6%
1:50 000 1:250 000 71.4%
Zhang, Li 2011 Graph No. of road segments navigation
Scale free Top 2% strokes Ego network 82.1%
Top 10% strokes 89.9%
Top 15% strokes 92.5%
Top 20% strokes 92.6%
Top 2% strokes Weighted ego network 87.1%
Top 10% strokes 95.8%
Top 15% strokes 94%
Top 20% strokes 94.6%
Gülgen, Gökgöz 2011 Mesh Selected road length change database generalization
1:25 000 1:50 000 Urban block amalgamation 14.10%
1:100 000 −17.30%
Yang et al. 2011 Stroke 1:1 000 Not specified Mean similarity with target database generalization
Hierarchical stroke generation 40.75%
Touya 2010 Stroke, Mesh 1:50 000 1:100 000 Road length overlap database generalization
Enriched structural selection 97%
Liu et al. 2010 Stroke 1:10 000 1:50 000 Avg no of identical strokes database generalization
Stroke generation with seed extension 91.84%
Chen et al. 2009 Mesh 1:10 000 1:50 000 Mean consistency with existing map map updates
Mesh density-based selection 89.50%
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, Geography, Geosciences, other