[
Abellan, A., Derron, M. H., & Jaboyedoff, M. (2016). Use of 3D Point Clouds in Geohazards Special Issue: Current Challenges and Future Trends. Remote Sensing, 8, 130. https://doi.org/10.3390/rs8020130
]Search in Google Scholar
[
Aigbadon, G. O., Ocheli, A., & Akudo, E. O. (2021). Geotechnical evaluation of gully erosion and landslides materials and their impact in Iguosa and its environs, southern Nigeria. Environmental Systems Research, 10, 36. https://doi.org/10.1186/s40068-021-00240-6
]Search in Google Scholar
[
Alliez, P., Meyer, M., & Desbrun, M. (2002). Interactive geometry remeshing. ACM Transactions on Graphics, 21(3), 347–354. https://dl.acm.org/doi/10.1145/566654.566588
]Search in Google Scholar
[
Al-Rawabdeh, A., He, F., Moussa, A., El-Sheimy, N., & Habib, A. (2016). Using an Unmanned Aerial Vehicle-Based Digital Imaging System to Derive a 3D Point Cloud for Landslide Scarp Recognition. Remote Sensing, 8, 95. https://doi.org/10.3390/rs8020095
]Search in Google Scholar
[
Anders, N. S., Seijmonsbergen, A. C., & Bouten, W. (2013). Geomorphological Change Detection Using Object-Based Feature Extraction from Multi-Temporal LiDAR Data. IEEE Geoscience and Remote Sensing Letters, 10(6), 1587–1591. https://doi.org/10.1109/LGRS.2013.2262317
]Search in Google Scholar
[
ARCGISpro (2023). Compute Change Raster (Image Analyst). https://pro.arcgis.com/en/pro-app/3.0/tool-reference/image-analyst/computechange-raster.htm
]Search in Google Scholar
[
Azizi, Z., Najafi, A., & Sadeghian, S. (2014). Forest Road Detection Using LiDAR Data. Journal of Forestry Research, 25, 975–980. https://doi.org/10.1007/s11676-014-0544-0
]Search in Google Scholar
[
Barbosa, N., Andreani, L., Gloaguen, R., & Ratschbacher, L. (2021). Window-Based Morphometric Indices as Predictive Variables for Landslide Susceptibility Models. Remote Sensing, 13, 451. https://doi.org/10.3390/rs13030451
]Search in Google Scholar
[
Berti, M., Corsini, A., & Daehne, A. (2013). Comparative analysis of surface roughness algorithms for the identification of active landslides. Geomorphologym, 182, 1–18. https://doi.org/10.1016/j.geomorph.2012.10.022./geosciences8010023
]Search in Google Scholar
[
Brecheisen, Z. S., & Richter, D. (2021). Gully-erosion estimation and terrain reconstruction using analyses of microtropographic roughness and LiDAR. Catena, 202, 105264. https://doi.org/10.1016/j.catena.2021.105264
]Search in Google Scholar
[
British Geological Survey (2024). How to classify a landslide. https://www.bgs.ac.uk/discovering-geology/earth-hazards/landslides/how-toclassify-a-landslide/
]Search in Google Scholar
[
Cesar, R. M., & Costa, L. D. F. (1995). A Pragmatic Introduction to Machine Vision, by R. Jain, R. Kasturi and B. G. Schunck. Real Time Imaging, 1(6), 437–439. https://doi.org/10.1006/rtim.1995.1045
]Search in Google Scholar
[
Chiba, T., & Hasi, B. (2016). Ground surface visualization using red relief image map for a variety of map scales. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 41, 393–397. https://doi.org/10.5194/isprs-archives-XLI-B2-393-2016
]Search in Google Scholar
[
Chiba, T., Kaneta, S., & Suzuki, Y. (2008). Red Relief Image Map, New Visualization Method for Three Dimensional Data. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 37, 1071–1076. https://www.isprs.org/proceedings/XXXVII/congress/2_pdf/11_ThS-6/08.pdf
]Search in Google Scholar
[
Chudy, F., Sadibol, J., Slamova, M., Belacek, B., Beljak Pazinova, N., & Beljak, J. (2018b). Identification of Historic Roads in the Forest Landscape by Modern Contactless Methods of Large-Scale Mapping. In: Geoconference on Informatics, Geoinformatics and Remote Sensing (pp. 183–190). Book Series: International Multidisciplinary GeoConference-SGEM, Albena Bulgaria.
]Search in Google Scholar
[
Chudý F., Slámová, M., Tomaštík, J., Prokešová, R., & Mokroš, M. (2019). Identification of Micro-Scale Landforms of Landslides Using Precise Digital Elevation Models. Geosciences, 9(3), 117. https://doi.org/10.3390/geosciences9030117
]Search in Google Scholar
[
Chudý, F., Slámová, M., Tomaštík, J., Tunák, D., Kardoš, M., & Saloň, Š. (2018a). The application of civic technologies in a field survey of landslides. Land Degradation & Development, 29(6), 1858–1870. https://doi.org/10.1002/ldr.2957
]Search in Google Scholar
[
Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. In A. K. Turner, & R. L. Schuster (Eds.), Landslides investigation and mitigation. Transportation Research Board, Special Report No. 247, U.S. National Research Council.
]Search in Google Scholar
[
Demarchi, L., Kania, A., Ciężkowski, W., Piórkowski, H., Oświecimska-Piasko, Z., & Chormański, J. (2020). Recursive Feature Elimination and Random Forest Classification of Natura 2000 Grasslands in Lowland River Valleys of Poland Based on Airborne Hyperspectral and LiDAR Data Fusion. Remote Sensing, 12, 1842. https://doi.org/10.3390/rs12111842
]Search in Google Scholar
[
Długosz, M. (2012). Digital Terrain Model (DTM) as a Tool for Landslide Investigation in the Polish Carpathians. Studia Geomorphologica Carpatho-Balcanica 2012, XLVI, 5–23, https://doi.org/10.2478/v10302-012-0001-3
]Search in Google Scholar
[
Domènech, G., Alvioli, M., & Corominas, J. (2019). Preparing first-time slope failures hazard maps: From pixel-based to slope unit-based. Landslides, 17, 249–265. http://doi.org/10.1007/s10346-019-01279-4
]Search in Google Scholar
[
Du, P., Xu, Y., Guo, Y., & Li, H. (2023). Assessing loess landslide volume using high-precision UAV-derived DEM: A case study of the 15 March 2019 landslide in Zaoling Township, Xiangning County in North China. Natural Hazards Research, 3(4), 640–645. https://doi.org/10.1016/j.nhres.2023.07.006
]Search in Google Scholar
[
Evans, I. S., & Cox, N. J. et al. (1999). Relations between land surface properties: altitude, slope and curvature. In S. Hergarten, & H. J. Neugebauer (Eds.), Process Modelling and Landform Evolution, Vol. 78 (pp. 13–45). Springer. https://doi.org/10.1007/BFb0009718
]Search in Google Scholar
[
Fernández, T., Pérez, J. L., Colomo, C., Cardenal, J., Delgado, J., Palenzuela, J. A., …, & Chacón, J. (2017). Assessment of the Evolution of a Landslide Using Digital Photogrammetry and LiDAR Techniques in the Alpujarras Region (Granada, Southeastern Spain). Geosciences, 7(2), 32. https://doi.org/10.3390/geosciences7020032
]Search in Google Scholar
[
Frattini, P., Crosta, G. B., Fusi, N., & Dal Negro, P. (2004). Shallow landslides in pyroclastic soil: a distributed modelling approach for hazard assessment. Engineering Geology, 73, 277–295. https://doi.org/10.1016/j.enggeo.2004.01.009
]Search in Google Scholar
[
Giano, S. I., Danese, M., Gioia, D., Pescatore, E., Siervo, V., & Bentivenga, M. (2020). Tools for Semi-automated Landform Classification: A Comparison in the Basilicata Region (Southern Italy). In O. Gervasi et al. (Eds.), Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science, Vol. 12250 (pp. 709–722). Springer. https://doi.org/10.1007/978-3-030-58802-1_51
]Search in Google Scholar
[
Giordan, D., Adams, M. S., Aicardi, I. Alicandro, M., Allasia, P., Baldo, M., …, & Troilo, F. (2020). The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bulletin of Engineering Geology and the Environment 79, 3437–3481. https://doi.org/10.1007/s10064-020-01766-2
]Search in Google Scholar
[
GISGeography, 2023. Quantile Classification in GIS. https://gisgeography.com/quantile-classification-gis/
]Search in Google Scholar
[
Guthrie, R. H., & Evans, S. G. (2004). Magnitude and frequency of landslides triggered by a storm event, Loughborough Inlet, British Columbia. Natural Hazards and Earth System Science, 4(3), 475–483. https://nhess.copernicus.org/articles/4/475/2004/nhess-4-475-2004.pdf
]Search in Google Scholar
[
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112, 42–66. http://dx.doi.org/10.1016/j.earscirev.2012.02.001
]Search in Google Scholar
[
Harris, A., & Baird, A. J. (2018). Microtopographic Drivers of Vegetation Patterning in Blanket Peatlands Recovering from Erosion. Ecosystems, 1–20. https://doi.org/10.1007/s10021-018-0321-6
]Search in Google Scholar
[
Hou, W., Lu, X., Wu, P., Xue, A., & Li, L. (2017). An Integrated Approach for Monitoring and Information Management of the Guanling Landslide (China). ISPRS International Journal of Geo-Information, 6, 79. https://doi.org/10.3390/ijgi6030079
]Search in Google Scholar
[
Hussain, M., Chen, D., Cheng, A., Wei, H., & Stanley, D. (2013). Change detection from remotely sensed images: From pixel-based to objectbased approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91–106. http://dx.doi.org/10.1016/j.isprsjprs.2013.03.006
]Search in Google Scholar
[
Jaboyedoff, M., Abellán, A., Carrea, D., Derron, M. H., Matasci, B., & Michoud, C. (2018). Mapping and monitoring of landslides using LiDAR. In R. Singh, & D. Bartlett (Eds.), Natural Hazards (pp. 397–420). CRC Press. https://doi.org/10.1201/9781315166841-17
]Search in Google Scholar
[
Jagodnik, P. (2024). Evaluating the potential of visual interpretation of airborne LiDAR datasets for the identification and mapping of small landslides. In EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15211. https://doi.org/10.5194/egusphere-egu24-15211
]Search in Google Scholar
[
Jagodnik, P., Jagodnik, V., Arbanas, Ž., & Mihalić Arbanas, S. (2020). Landslide types in the Slani Potok gully, Croatia. Geologia Croatica, 73, 13–28. https://doi.org/10.4154/gc.2020.04
]Search in Google Scholar
[
Jakob, S., Zimmermann, R., & Gloaguen, R. (2017). The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo – A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data. Remote Sensing, 9, 88. https://doi.org/10.3390/rs9010088
]Search in Google Scholar
[
Jasiewicz, J., & Stepinski, T. F. (2013). Geomorphons – a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147–156. https://doi.org/10.1016/j.geomorph.2012.11.005
]Search in Google Scholar
[
Jiao, C., Heitzler, M., & Hurni, L. (2021). A survey of road feature extraction methods from raster maps. Transactions in GIS, 25, 2734–2763. https://doi.org/10.1111/tgis.12812
]Search in Google Scholar
[
Kampouraki, M., Wood, G. A., & Brewer, T. R. (2008). Opportunities and limitations of object based image analysis for detecting urban impervious and vegetated surfaces using true-colour aerial photography. In T. Blaschke, S. Lang, & G. Hay (Eds.), Object-Based Image Analysis-Spatial Concepts for Knowledge-Driven Remote Sensing Applications (pp. 555–569), Springer. https://doi.org/10.1007/978-3-540-77058-9_30
]Search in Google Scholar
[
Kokalj, Ž., & Somrak, M. (2019). Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. Remote Sensing, 11(7), 747. https://doi.org/10.3390/rs11070747
]Search in Google Scholar
[
Korzeniowska, K., Pfeifer, N., & Landtwing, S. (2018). Mapping Gullies, Dunes, Lava Fields, and Landslides via Surface Roughness. Geomorphology, 301, 53–67, http://doi.org/10.1016/j.geomorph.2017.10.011
]Search in Google Scholar
[
LAStools, 2023. LAStools. http://rapidlasso.com/LAStools
]Search in Google Scholar
[
Lee, C. F., Huang, W. K., Huang, C. M., & Chi, C. C. (2017). Deepseated landslide mapping and geomorphic characteristic using high resolution DTM in northern Taiwan. In Workshop on World Landslide Forum (pp. 767–777). Springer. https://doi.org/10.1007/978-3-319-53498-5_88
]Search in Google Scholar
[
Leempoel, K., Parisod, Ch., Geiser, C., Daprà, L., Vittoz, P., & Joost, S. (2015). Very high-resolution digital elevation models: Are multiscale derived variables ecologically relevant? Methods Ecology and Evolution, 6, 1373–1383. https://doi.org/10.1111/2041-210X.12427
]Search in Google Scholar
[
Li, G., & Wan, Y. (2015). A new combination classification of pixel- and object-based methods. International Journal of Remote Sensing, 36(23), 5842–5868. https://doi.org/10.1080/01431161.2015.1109728
]Search in Google Scholar
[
Lieskovský, J., Lieskovský, T., Hladíková, K., Štefunková, D., & Hurajtová, N. (2022). Potential of airborne LiDAR data in detecting cultural landscape features in Slovakia. Landscape Research, 47(5), 539–558. https://doi.org/10.1080/01426397.2022.2045923
]Search in Google Scholar
[
Liščák, P., Pauditš, P., Petro, Ľ., Iglárová, Ľ., Ondrejka, P., Dananaj, I., …, & Drotár, D. (2010). Registration and evaluation of newly evolved slope failures in 2010 in Prešov and Košice regions. Mineralia Slovaca, 42(2), 393–406.
]Search in Google Scholar
[
Liu, D., & Xia, F. (2010). Assessing object-based classification: advantages and limitations. Remote Sensing Letters, 1(4), 187–194. https://doi.org/10.1080/01431161003743173
]Search in Google Scholar
[
Liu, S., Yin, K., Zhou, C., Gui, L., Liang, X., Lin, W., & Zhao, B. (2021). Susceptibility Assessment for Landslide Initiated along Power Transmission Lines. Remote Sensing, 13(24), 5. https://doi.org/10.3390/rs13245068
]Search in Google Scholar
[
Lucieer, A., Jong, S. M. de, & Turner, D. (2014). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography: Earth and Environment, 38(1), 97–116. http://dx.doi.org/10.1177/0309133313515293
]Search in Google Scholar
[
Maglay, J., Moravcová, M., Šefčík, P., Vlačiky, M., & Pristaš, J. (2011). Prehľadná geologická mapa kvartéru Slovenskej republiky 1:200,000. Bratislava (The Ministry of the Environment and State Geological Institute of Dionýz Štúr – SGIDŠ) https://www.geology.sk/prehladnegeologicke-mapy-v-mierke-1-200-000/
]Search in Google Scholar
[
Mărgărint, M. C., & Niculiţă, M. (2017). Landslide Type and Pattern in Moldavian Plateau, NE Romania. In M. Radoane, & A. Vespremeanu-Stroe (Eds.), Landform Dynamics and Evolution in Romania (pp. 271–304). Springer. https://doi.org/10.1007/978-3-319-32589-7_12
]Search in Google Scholar
[
Martins, B. H., Suzuki, M., Yastika, P. E., & Shimizu, N. (2020). Ground Surface Deformation Detection in Complex Landslide Area— Bobonaro, Timor-Leste—Using SBAS DInSAR, UAV Photogrammetry, and Field Observations. Geosciences, 10, 245. https://doi.org/10.3390/geosciences10060245
]Search in Google Scholar
[
Mašlár, E. Mašlárová, I., Ondrus, P., Jelínek, R., Stercz, M., Pačajová, K., & Stašik. Ľ. (2020). Engineering geological investigations of slope deformations at selected localities in the period 2018–2019. Geologické práce, Správy 136, 19–32. https://www.geology.sk/wp-content/uploads/documents/foto/GPS/136/02-Maslar_GPS_136.pdf
]Search in Google Scholar
[
Masruroh, H., Soemarno, S., Kurniawan, S., & Leksono, A. S. (2023). A Spatial Model of Landslides with A Micro-Topography and Vegetation Approach for Sustainable Land Management in the Volcanic Area. Sustainability, 15, 3043. https://doi.org/10.3390/su15043043
]Search in Google Scholar
[
Mayoral, A., Toumazet, J.-P., Simon, F.-X., Vautier, F., & Peiry, J.-L. (2017). The Highest Gradient Model: A New Method for Analytical Assessment of the Efficiency of LiDAR-Derived Visualization Techniques for Landform Detection and Mapping. Remote Sensing, 9, 120. https://doi.org/10.3390/rs9020120
]Search in Google Scholar
[
Mercuri, M., Conforti, M., Ciurleo, M., & Borrelli, L. (2023). UAV Application for Short-Time Evolution Detection of the Vomice Landslide (South Italy). Geosciences, 13(2), 29. https://doi.org/10.3390/geosciences13020029
]Search in Google Scholar
[
Ministry of the Environment of the Slovak Republic (2018). Program prevencie a manažmentu zosuvných rizík (2014–2020) – aktualizácia. https://www.minzp.sk/files/sekcia-geologie-prirodnych-zdrojov/programprevencie-manazmentu-zosuvnych-rizik-2014-2020-aktualizacia.pdf
]Search in Google Scholar
[
Mora, O. E., Lenzano, M. G., Toth, C. K., Grejner-Brzezinska, D. A., & Fayne, J. V. (2018). Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs. Geosciences, 8, 23. https://doi.org/10.3390/geosciences8010023
]Search in Google Scholar
[
Na, J., Yang, X., Dai, W., Li, M., Xiong, L., Zhu, R., & Tang, G. (2017). Bidirectional DEM relief shading method for extraction of gully shoulder line in loess tableland area. Physical Geography, 39, 368–386. https://doi.org/10.1080/02723646.2017.1410974
]Search in Google Scholar
[
Ortuño, M., Guinau, M., Calvet, J., Furdada, G., Bordonau, J., Ruiz, A., & Camafort, M. (2017). Potential of airborne LiDAR data analysis to detect subtle landforms of slope failure: Portainé, Central Pyrenees. Geomorphology, 295, 364–382. https://doi.org/10.1016/j.geomorph.2017.07.015
]Search in Google Scholar
[
Parkner, T., Page, M. J., Marden, M., & Marutani, T. (2007). Gully systems under undisturbed indigenous forest, East Coast Region, New Zealand. Geomorphology, 84, 241–253. https://doi.org/10.1016/j.geomorph.2006.01.042
]Search in Google Scholar
[
Peternel, T., Kumelj, Š., Oštir, K., & Komac, M. (2017). Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. Landslides, 14, 395–406. https://doi.org/10.1007/s10346-016-0759-6
]Search in Google Scholar
[
Pijl, A., Bailly, J. S., Feurer, D., El Maaoui, M. A., Boussema, M. R., & Tarolli, P. (2020). TERRA: Terrain extraction from elevation rasters through repetitive anisotropic filtering. International Journal of Applied Earth Observation and Geoinformation, 84, 101977. https://doi.org/10.1016/j.jag.2019.101977
]Search in Google Scholar
[
Pirotti, F., & Tarolli, P. (2010). Suitability of LiDAR Point Density and Derived Landform Curvature Maps for Channel Network Extraction. Hydrological Processes, 24, 1187–1197. https://doi.org/10.1002/hyp.7582
]Search in Google Scholar
[
Podolszki, L., Kurečić, T., Bateson, L., & Svennevig, K. (2022). Remote Landslide Mapping, Field Validation and Model Development – An Example from Kravarsko, Croatia. Geologia Croatica, 75(1), 67–82. https://doi.org/10.4154/gc.2022.01
]Search in Google Scholar
[
Prokešová, R., Kardoš, M., & Medveďová, A. (2010). Landslide dynamics from high-resolution aerial photographs: A case study from the Western Carpathians, Slovakia. Geomorphology, 115(1–2), 90–101. https://doi.org/10.1016/j.geomorph.2009.09.033
]Search in Google Scholar
[
QGIS Python Plugins Repository (2019). Plugins by Kosuke ASAHI. https://plugins.qgis.org/plugins/author/Kosuke%20ASAHI/
]Search in Google Scholar
[
QGIS Python Plugins Repository (2021). Virtual Raster Builder. https://plugins.qgis.org/plugins/vrtbuilderplugin/
]Search in Google Scholar
[
QGIS Python Plugins Repository (2022). Qgis2threejs. https://plugins.qgis.org/plugins/Qgis2threejs/
]Search in Google Scholar
[
QGIS Python Plugins Repository (2023). qProf 0.5.1. https://plugins.qgis.org/plugins/qProf/version/0.5.1/
]Search in Google Scholar
[
Razak, K. A., Straatsma, M. W., van Westen, C. J., Malet, J.-P, & de Jong, S. M. (2011). Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization. Geomorphology, 126, 186–200. https://doi.org/10.1016/j.geomorph.2010.11.003
]Search in Google Scholar
[
Roberts, A. (2001) Curvature attributes and their application to 3D interpreted horizons. First Break, 19, 85–99. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.0263-5046.2001.00142.x
]Search in Google Scholar
[
Rossi, G., Tanteri, L., Tofani, V., Vannocci, P., Moretti, S., & Casagli, N. (2018). Multitemporal UAV surveys for landslide mapping and characterization. Landslides, 15, 1045–1052. https://doi.org/10.1007/s10346-018-0978-0
]Search in Google Scholar
[
SAGA-GIS Module Library Documentation (v2.2.0). Module Sky View Factor (2008). http://www.saga-gis.org/saga_tool_doc/2.2.0/ta_lighting_3.html
]Search in Google Scholar
[
SAGA-GIS Tool Library Documentation (v2.2.0) (2005). Module Supervised Classification for Grids. https://saga-gis.sourceforge.io/saga_tool_doc/2.2.0/imagery_classification_0.html
]Search in Google Scholar
[
SAGA-GIS Tool Library Documentation (v2.2.1). Module Slope, Aspect, Curvature (2001). https://saga-gis.sourceforge.io/saga_tool_doc/2.2.1/ta_morphometry_0.html
]Search in Google Scholar
[
SAGA-GIS Module Library Documentation (v2.2.1). Module Wombling (Edge Detection) (2015). https://saga-gis.sourceforge.io/saga_tool_doc/2.2.1/grid_filter_16.html
]Search in Google Scholar
[
Satari, B., & Kazimi, M. (2021). Extraction of linear structures from digital terrain models using deep learning. AGILE GIScience Series, 2(11), 1–14. https://doi.org/10.5194/agile-giss-2-11-2021
]Search in Google Scholar
[
Schillaci, C., Braun, A., & Kropáček, J. (2015). Terrain analysis and landform recognition. In L. Clarke, & J. Nield, (Eds.), Geomorphological Techniques (pp. 1–18). British Society for Geomorphology.
]Search in Google Scholar
[
Shary, P. A., Sharaya, L. S., & Mitusov, A. V. (2002). Fundamental Quantitative Methods of Land Surface Analysis. Geoderma, 107, 1–32. http://dx.doi.org/10.1016/S0016-7061(01)00136-7
]Search in Google Scholar
[
Shruthi, R. B., Kerle, N., & Jetten, V. (2011). Object-based gully feature extraction using high spatial resolution imagery. Geomorphology, 134(3–4), 260–268. https://doi.org/10.1016/j.geomorph.2011.07.003
]Search in Google Scholar
[
Šimeková, J., Martinčeková, T., Abrahám, P., Gejdoš, T., Grenčíková, A., Grman, D., ..., & Sluka V. (2006). The Atlas of the slope stability maps of the Slovak Republic at a scale 1:50,000. MŽP SR. https://ags.geology.sk/arcgis/services/WebServices/SD/MapServer/WMSServer
]Search in Google Scholar
[
Slámová, M., Pažinová, N. B., Belčáková, I., Beljak, J., & Maliniak, P. (2023). Identification of historical trackways in forests using contextual geospatial analyses. Archaeological Prospection, 30(2), 135–152. https://doi.org/10.1002/arp.1882
]Search in Google Scholar
[
Sofia, G., Tarolli, P., Cazorzi, F., & Dalla Fontana, G. (2010). Channel Network Identification from High-Resolution DTM: A Statistical Approach. Hydrology and Earth System Sciences, 7, 9327–9365.
]Search in Google Scholar
[
Strydom, T., & Poisot, T. (2023). SpatialBoundaries.jl: edge detection using spatial wombling. Ecography, 5, e06609. https://doi.org/10.1111/ecog.06609
]Search in Google Scholar
[
Štular, B., Kokalj, Ž., Oštir, K., & Nuninger L. (2012). Visualisation of lidarderived relief models for detection of archaeological features. Journal of Archaeological Science, 39(11), 3354–3360. https://halshs.archivesouvertes.fr/halshs-00743691
]Search in Google Scholar
[
Syzdykbayev, M., Karimi, B., & Karimi, H. A. A. (2020). Method for extracting some key terrain features from shaded relief of digital terrain models. Remote Sensing, 12, 2809.
]Search in Google Scholar
[
Tarolli, P., Pijl, A., Cucchiaro, S., & Wei, W. (2020). Slope instabilities in steep cultivation systems: Process classification and opportunities from remote sensing. Land Degradation & Development, 32, 1368–138. http://doi.org/10.1002/ldr.3798
]Search in Google Scholar
[
The Geodesy, Cartography and Cadastre Authority of the Slovak Republic (2023a). Geoportal Download. Digital Terrain Model DMR3.5. https://opendata.skgeodesy.sk/static/DMR3_5/dmr3_5-10.zip
]Search in Google Scholar
[
The Geodesy, Cartography and Cadastre Authority of the Slovak Republic (2023b). ZBGIS®. Map Client Terrain. https://zbgis.skgeodesy.sk/mkzbgis/sk/teren/toc/dmr5?
]Search in Google Scholar
[
The Geodesy, Cartography and Cadastre Authority of the Slovak Republic (2023c). Aerial Laser Scanning and DMR 5.0. https://www.geoportal.sk/files/zbgis/lls/parametre-lokality-zberu-udajov-lls.pdf
]Search in Google Scholar
[
The Geodesy, Cartography and Cadastre Authority of the Slovak Republic (2023d). Orthomosaic 2023. https://zbgisws.skgeodesy.sk/zbgis_ortofoto_wms/service.svc/get
]Search in Google Scholar
[
Thomas, I. A., Jordan, P., Shine, O., Fenton, O., Mellander, P. E., Dunlop, P., & Murphy, P. N. C. (2017). Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography. International Journal of Applied Earth Observation and Geoinformation, 54, 38–52. https://doi.org/10.1016/j.jag.2016.08.012
]Search in Google Scholar
[
Turner, D., Lucieer, A., & De Jong, S. M. (2015). Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sensing, 7, 1736–1757. https://doi.org/10.3390/rs70201736
]Search in Google Scholar
[
Tzvetkov, J. (2018). Relief visualization techniques using free and open source GIS tools. Polish Cartographical Review, 50, 61–71. https://doi.org/10.2478/pcr-2018-0004
]Search in Google Scholar
[
Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons, J., Nyssen, J., & Van Beek, L. (2005). The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology, 67(3–4), 351–363. https://doi.org/10.1016/j.geomorph.2004.11.001
]Search in Google Scholar
[
Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., van Acker, V., Nyssen, J., Moeyersons, J., ..., & Vandekerckhove, L. (2007). The use of LIDARderived images for mapping old landslides under forest. Earth Surface Process, 32, 754–769.
]Search in Google Scholar
[
Wilson, J. P. (2012). Digital terrain modeling. Geomorphology, 137(1), 107–121. https://doi.org/10.1016/j.geomorph.2011.03.012
]Search in Google Scholar
[
Yan, G., Tang, G., Chen, J., Li, F., Yang, X., Xiong, L., & Lu, D. (2024). Modeling computer sight based on DEM data to detect terrain breaks caused by gully erosion on the loess Plateau. Catena, 237, 107837.
]Search in Google Scholar
[
Zêzere, J. L. (2002). Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Natural Hazards and Earth System Sciences, 2(1/2), 73–82. https://doi.org/10.1007/s12517-017-2980-6
]Search in Google Scholar
[
Zhao, H., Fang, X., Ding, H., Josef, S., Xiong, L., Na, J., & Tang, G. (2017). Extraction of terraces on the Loess Plateau from high-resolution DEMs and imagery utilizing object-based image analysis. ISPRS International Journal of Geo-Information, 6(6), 157. https://doi.org/10.3390/ijgi6060157
]Search in Google Scholar
[
Zhou, X., Li, W., & Arundel, S. T. (2018). A spatio-contextual probabilistic model for extracting linear features in hilly terrains from highresolution DEM data. International Journal of Geographical Information Science, 33, 666–686. https://doi.org/10.1080/13658816.2018.1554814
]Search in Google Scholar