Open Access

Detection and visualisation of terrain edges in slope failures

, , ,  and   
Jun 30, 2025

Cite
Download Cover

Abellan, A., Derron, M. H., & Jaboyedoff, M. (2016). Use of 3D Point Clouds in Geohazards Special Issue: Current Challenges and Future Trends. Remote Sensing, 8, 130. https://doi.org/10.3390/rs8020130 Search in Google Scholar

Aigbadon, G. O., Ocheli, A., & Akudo, E. O. (2021). Geotechnical evaluation of gully erosion and landslides materials and their impact in Iguosa and its environs, southern Nigeria. Environmental Systems Research, 10, 36. https://doi.org/10.1186/s40068-021-00240-6 Search in Google Scholar

Alliez, P., Meyer, M., & Desbrun, M. (2002). Interactive geometry remeshing. ACM Transactions on Graphics, 21(3), 347–354. https://dl.acm.org/doi/10.1145/566654.566588 Search in Google Scholar

Al-Rawabdeh, A., He, F., Moussa, A., El-Sheimy, N., & Habib, A. (2016). Using an Unmanned Aerial Vehicle-Based Digital Imaging System to Derive a 3D Point Cloud for Landslide Scarp Recognition. Remote Sensing, 8, 95. https://doi.org/10.3390/rs8020095 Search in Google Scholar

Anders, N. S., Seijmonsbergen, A. C., & Bouten, W. (2013). Geomorphological Change Detection Using Object-Based Feature Extraction from Multi-Temporal LiDAR Data. IEEE Geoscience and Remote Sensing Letters, 10(6), 1587–1591. https://doi.org/10.1109/LGRS.2013.2262317 Search in Google Scholar

ARCGISpro (2023). Compute Change Raster (Image Analyst). https://pro.arcgis.com/en/pro-app/3.0/tool-reference/image-analyst/computechange-raster.htm Search in Google Scholar

Azizi, Z., Najafi, A., & Sadeghian, S. (2014). Forest Road Detection Using LiDAR Data. Journal of Forestry Research, 25, 975–980. https://doi.org/10.1007/s11676-014-0544-0 Search in Google Scholar

Barbosa, N., Andreani, L., Gloaguen, R., & Ratschbacher, L. (2021). Window-Based Morphometric Indices as Predictive Variables for Landslide Susceptibility Models. Remote Sensing, 13, 451. https://doi.org/10.3390/rs13030451 Search in Google Scholar

Berti, M., Corsini, A., & Daehne, A. (2013). Comparative analysis of surface roughness algorithms for the identification of active landslides. Geomorphologym, 182, 1–18. https://doi.org/10.1016/j.geomorph.2012.10.022./geosciences8010023 Search in Google Scholar

Brecheisen, Z. S., & Richter, D. (2021). Gully-erosion estimation and terrain reconstruction using analyses of microtropographic roughness and LiDAR. Catena, 202, 105264. https://doi.org/10.1016/j.catena.2021.105264 Search in Google Scholar

British Geological Survey (2024). How to classify a landslide. https://www.bgs.ac.uk/discovering-geology/earth-hazards/landslides/how-toclassify-a-landslide/ Search in Google Scholar

Cesar, R. M., & Costa, L. D. F. (1995). A Pragmatic Introduction to Machine Vision, by R. Jain, R. Kasturi and B. G. Schunck. Real Time Imaging, 1(6), 437–439. https://doi.org/10.1006/rtim.1995.1045 Search in Google Scholar

Chiba, T., & Hasi, B. (2016). Ground surface visualization using red relief image map for a variety of map scales. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 41, 393–397. https://doi.org/10.5194/isprs-archives-XLI-B2-393-2016 Search in Google Scholar

Chiba, T., Kaneta, S., & Suzuki, Y. (2008). Red Relief Image Map, New Visualization Method for Three Dimensional Data. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 37, 1071–1076. https://www.isprs.org/proceedings/XXXVII/congress/2_pdf/11_ThS-6/08.pdf Search in Google Scholar

Chudy, F., Sadibol, J., Slamova, M., Belacek, B., Beljak Pazinova, N., & Beljak, J. (2018b). Identification of Historic Roads in the Forest Landscape by Modern Contactless Methods of Large-Scale Mapping. In: Geoconference on Informatics, Geoinformatics and Remote Sensing (pp. 183–190). Book Series: International Multidisciplinary GeoConference-SGEM, Albena Bulgaria. Search in Google Scholar

Chudý F., Slámová, M., Tomaštík, J., Prokešová, R., & Mokroš, M. (2019). Identification of Micro-Scale Landforms of Landslides Using Precise Digital Elevation Models. Geosciences, 9(3), 117. https://doi.org/10.3390/geosciences9030117 Search in Google Scholar

Chudý, F., Slámová, M., Tomaštík, J., Tunák, D., Kardoš, M., & Saloň, Š. (2018a). The application of civic technologies in a field survey of landslides. Land Degradation & Development, 29(6), 1858–1870. https://doi.org/10.1002/ldr.2957 Search in Google Scholar

Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. In A. K. Turner, & R. L. Schuster (Eds.), Landslides investigation and mitigation. Transportation Research Board, Special Report No. 247, U.S. National Research Council. Search in Google Scholar

Demarchi, L., Kania, A., Ciężkowski, W., Piórkowski, H., Oświecimska-Piasko, Z., & Chormański, J. (2020). Recursive Feature Elimination and Random Forest Classification of Natura 2000 Grasslands in Lowland River Valleys of Poland Based on Airborne Hyperspectral and LiDAR Data Fusion. Remote Sensing, 12, 1842. https://doi.org/10.3390/rs12111842 Search in Google Scholar

Długosz, M. (2012). Digital Terrain Model (DTM) as a Tool for Landslide Investigation in the Polish Carpathians. Studia Geomorphologica Carpatho-Balcanica 2012, XLVI, 5–23, https://doi.org/10.2478/v10302-012-0001-3 Search in Google Scholar

Domènech, G., Alvioli, M., & Corominas, J. (2019). Preparing first-time slope failures hazard maps: From pixel-based to slope unit-based. Landslides, 17, 249–265. http://doi.org/10.1007/s10346-019-01279-4 Search in Google Scholar

Du, P., Xu, Y., Guo, Y., & Li, H. (2023). Assessing loess landslide volume using high-precision UAV-derived DEM: A case study of the 15 March 2019 landslide in Zaoling Township, Xiangning County in North China. Natural Hazards Research, 3(4), 640–645. https://doi.org/10.1016/j.nhres.2023.07.006 Search in Google Scholar

Evans, I. S., & Cox, N. J. et al. (1999). Relations between land surface properties: altitude, slope and curvature. In S. Hergarten, & H. J. Neugebauer (Eds.), Process Modelling and Landform Evolution, Vol. 78 (pp. 13–45). Springer. https://doi.org/10.1007/BFb0009718 Search in Google Scholar

Fernández, T., Pérez, J. L., Colomo, C., Cardenal, J., Delgado, J., Palenzuela, J. A., …, & Chacón, J. (2017). Assessment of the Evolution of a Landslide Using Digital Photogrammetry and LiDAR Techniques in the Alpujarras Region (Granada, Southeastern Spain). Geosciences, 7(2), 32. https://doi.org/10.3390/geosciences7020032 Search in Google Scholar

Frattini, P., Crosta, G. B., Fusi, N., & Dal Negro, P. (2004). Shallow landslides in pyroclastic soil: a distributed modelling approach for hazard assessment. Engineering Geology, 73, 277–295. https://doi.org/10.1016/j.enggeo.2004.01.009 Search in Google Scholar

Giano, S. I., Danese, M., Gioia, D., Pescatore, E., Siervo, V., & Bentivenga, M. (2020). Tools for Semi-automated Landform Classification: A Comparison in the Basilicata Region (Southern Italy). In O. Gervasi et al. (Eds.), Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science, Vol. 12250 (pp. 709–722). Springer. https://doi.org/10.1007/978-3-030-58802-1_51 Search in Google Scholar

Giordan, D., Adams, M. S., Aicardi, I. Alicandro, M., Allasia, P., Baldo, M., …, & Troilo, F. (2020). The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bulletin of Engineering Geology and the Environment 79, 3437–3481. https://doi.org/10.1007/s10064-020-01766-2 Search in Google Scholar

GISGeography, 2023. Quantile Classification in GIS. https://gisgeography.com/quantile-classification-gis/ Search in Google Scholar

Guthrie, R. H., & Evans, S. G. (2004). Magnitude and frequency of landslides triggered by a storm event, Loughborough Inlet, British Columbia. Natural Hazards and Earth System Science, 4(3), 475–483. https://nhess.copernicus.org/articles/4/475/2004/nhess-4-475-2004.pdf Search in Google Scholar

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112, 42–66. http://dx.doi.org/10.1016/j.earscirev.2012.02.001 Search in Google Scholar

Harris, A., & Baird, A. J. (2018). Microtopographic Drivers of Vegetation Patterning in Blanket Peatlands Recovering from Erosion. Ecosystems, 1–20. https://doi.org/10.1007/s10021-018-0321-6 Search in Google Scholar

Hou, W., Lu, X., Wu, P., Xue, A., & Li, L. (2017). An Integrated Approach for Monitoring and Information Management of the Guanling Landslide (China). ISPRS International Journal of Geo-Information, 6, 79. https://doi.org/10.3390/ijgi6030079 Search in Google Scholar

Hussain, M., Chen, D., Cheng, A., Wei, H., & Stanley, D. (2013). Change detection from remotely sensed images: From pixel-based to objectbased approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91–106. http://dx.doi.org/10.1016/j.isprsjprs.2013.03.006 Search in Google Scholar

Jaboyedoff, M., Abellán, A., Carrea, D., Derron, M. H., Matasci, B., & Michoud, C. (2018). Mapping and monitoring of landslides using LiDAR. In R. Singh, & D. Bartlett (Eds.), Natural Hazards (pp. 397–420). CRC Press. https://doi.org/10.1201/9781315166841-17 Search in Google Scholar

Jagodnik, P. (2024). Evaluating the potential of visual interpretation of airborne LiDAR datasets for the identification and mapping of small landslides. In EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15211. https://doi.org/10.5194/egusphere-egu24-15211 Search in Google Scholar

Jagodnik, P., Jagodnik, V., Arbanas, Ž., & Mihalić Arbanas, S. (2020). Landslide types in the Slani Potok gully, Croatia. Geologia Croatica, 73, 13–28. https://doi.org/10.4154/gc.2020.04 Search in Google Scholar

Jakob, S., Zimmermann, R., & Gloaguen, R. (2017). The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo – A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data. Remote Sensing, 9, 88. https://doi.org/10.3390/rs9010088 Search in Google Scholar

Jasiewicz, J., & Stepinski, T. F. (2013). Geomorphons – a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147–156. https://doi.org/10.1016/j.geomorph.2012.11.005 Search in Google Scholar

Jiao, C., Heitzler, M., & Hurni, L. (2021). A survey of road feature extraction methods from raster maps. Transactions in GIS, 25, 2734–2763. https://doi.org/10.1111/tgis.12812 Search in Google Scholar

Kampouraki, M., Wood, G. A., & Brewer, T. R. (2008). Opportunities and limitations of object based image analysis for detecting urban impervious and vegetated surfaces using true-colour aerial photography. In T. Blaschke, S. Lang, & G. Hay (Eds.), Object-Based Image Analysis-Spatial Concepts for Knowledge-Driven Remote Sensing Applications (pp. 555–569), Springer. https://doi.org/10.1007/978-3-540-77058-9_30 Search in Google Scholar

Kokalj, Ž., & Somrak, M. (2019). Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. Remote Sensing, 11(7), 747. https://doi.org/10.3390/rs11070747 Search in Google Scholar

Korzeniowska, K., Pfeifer, N., & Landtwing, S. (2018). Mapping Gullies, Dunes, Lava Fields, and Landslides via Surface Roughness. Geomorphology, 301, 53–67, http://doi.org/10.1016/j.geomorph.2017.10.011 Search in Google Scholar

LAStools, 2023. LAStools. http://rapidlasso.com/LAStools Search in Google Scholar

Lee, C. F., Huang, W. K., Huang, C. M., & Chi, C. C. (2017). Deepseated landslide mapping and geomorphic characteristic using high resolution DTM in northern Taiwan. In Workshop on World Landslide Forum (pp. 767–777). Springer. https://doi.org/10.1007/978-3-319-53498-5_88 Search in Google Scholar

Leempoel, K., Parisod, Ch., Geiser, C., Daprà, L., Vittoz, P., & Joost, S. (2015). Very high-resolution digital elevation models: Are multiscale derived variables ecologically relevant? Methods Ecology and Evolution, 6, 1373–1383. https://doi.org/10.1111/2041-210X.12427 Search in Google Scholar

Li, G., & Wan, Y. (2015). A new combination classification of pixel- and object-based methods. International Journal of Remote Sensing, 36(23), 5842–5868. https://doi.org/10.1080/01431161.2015.1109728 Search in Google Scholar

Lieskovský, J., Lieskovský, T., Hladíková, K., Štefunková, D., & Hurajtová, N. (2022). Potential of airborne LiDAR data in detecting cultural landscape features in Slovakia. Landscape Research, 47(5), 539–558. https://doi.org/10.1080/01426397.2022.2045923 Search in Google Scholar

Liščák, P., Pauditš, P., Petro, Ľ., Iglárová, Ľ., Ondrejka, P., Dananaj, I., …, & Drotár, D. (2010). Registration and evaluation of newly evolved slope failures in 2010 in Prešov and Košice regions. Mineralia Slovaca, 42(2), 393–406. Search in Google Scholar

Liu, D., & Xia, F. (2010). Assessing object-based classification: advantages and limitations. Remote Sensing Letters, 1(4), 187–194. https://doi.org/10.1080/01431161003743173 Search in Google Scholar

Liu, S., Yin, K., Zhou, C., Gui, L., Liang, X., Lin, W., & Zhao, B. (2021). Susceptibility Assessment for Landslide Initiated along Power Transmission Lines. Remote Sensing, 13(24), 5. https://doi.org/10.3390/rs13245068 Search in Google Scholar

Lucieer, A., Jong, S. M. de, & Turner, D. (2014). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography: Earth and Environment, 38(1), 97–116. http://dx.doi.org/10.1177/0309133313515293 Search in Google Scholar

Maglay, J., Moravcová, M., Šefčík, P., Vlačiky, M., & Pristaš, J. (2011). Prehľadná geologická mapa kvartéru Slovenskej republiky 1:200,000. Bratislava (The Ministry of the Environment and State Geological Institute of Dionýz Štúr – SGIDŠ) https://www.geology.sk/prehladnegeologicke-mapy-v-mierke-1-200-000/ Search in Google Scholar

Mărgărint, M. C., & Niculiţă, M. (2017). Landslide Type and Pattern in Moldavian Plateau, NE Romania. In M. Radoane, & A. Vespremeanu-Stroe (Eds.), Landform Dynamics and Evolution in Romania (pp. 271–304). Springer. https://doi.org/10.1007/978-3-319-32589-7_12 Search in Google Scholar

Martins, B. H., Suzuki, M., Yastika, P. E., & Shimizu, N. (2020). Ground Surface Deformation Detection in Complex Landslide Area— Bobonaro, Timor-Leste—Using SBAS DInSAR, UAV Photogrammetry, and Field Observations. Geosciences, 10, 245. https://doi.org/10.3390/geosciences10060245 Search in Google Scholar

Mašlár, E. Mašlárová, I., Ondrus, P., Jelínek, R., Stercz, M., Pačajová, K., & Stašik. Ľ. (2020). Engineering geological investigations of slope deformations at selected localities in the period 2018–2019. Geologické práce, Správy 136, 19–32. https://www.geology.sk/wp-content/uploads/documents/foto/GPS/136/02-Maslar_GPS_136.pdf Search in Google Scholar

Masruroh, H., Soemarno, S., Kurniawan, S., & Leksono, A. S. (2023). A Spatial Model of Landslides with A Micro-Topography and Vegetation Approach for Sustainable Land Management in the Volcanic Area. Sustainability, 15, 3043. https://doi.org/10.3390/su15043043 Search in Google Scholar

Mayoral, A., Toumazet, J.-P., Simon, F.-X., Vautier, F., & Peiry, J.-L. (2017). The Highest Gradient Model: A New Method for Analytical Assessment of the Efficiency of LiDAR-Derived Visualization Techniques for Landform Detection and Mapping. Remote Sensing, 9, 120. https://doi.org/10.3390/rs9020120 Search in Google Scholar

Mercuri, M., Conforti, M., Ciurleo, M., & Borrelli, L. (2023). UAV Application for Short-Time Evolution Detection of the Vomice Landslide (South Italy). Geosciences, 13(2), 29. https://doi.org/10.3390/geosciences13020029 Search in Google Scholar

Ministry of the Environment of the Slovak Republic (2018). Program prevencie a manažmentu zosuvných rizík (2014–2020) – aktualizácia. https://www.minzp.sk/files/sekcia-geologie-prirodnych-zdrojov/programprevencie-manazmentu-zosuvnych-rizik-2014-2020-aktualizacia.pdf Search in Google Scholar

Mora, O. E., Lenzano, M. G., Toth, C. K., Grejner-Brzezinska, D. A., & Fayne, J. V. (2018). Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs. Geosciences, 8, 23. https://doi.org/10.3390/geosciences8010023 Search in Google Scholar

Na, J., Yang, X., Dai, W., Li, M., Xiong, L., Zhu, R., & Tang, G. (2017). Bidirectional DEM relief shading method for extraction of gully shoulder line in loess tableland area. Physical Geography, 39, 368–386. https://doi.org/10.1080/02723646.2017.1410974 Search in Google Scholar

Ortuño, M., Guinau, M., Calvet, J., Furdada, G., Bordonau, J., Ruiz, A., & Camafort, M. (2017). Potential of airborne LiDAR data analysis to detect subtle landforms of slope failure: Portainé, Central Pyrenees. Geomorphology, 295, 364–382. https://doi.org/10.1016/j.geomorph.2017.07.015 Search in Google Scholar

Parkner, T., Page, M. J., Marden, M., & Marutani, T. (2007). Gully systems under undisturbed indigenous forest, East Coast Region, New Zealand. Geomorphology, 84, 241–253. https://doi.org/10.1016/j.geomorph.2006.01.042 Search in Google Scholar

Peternel, T., Kumelj, Š., Oštir, K., & Komac, M. (2017). Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. Landslides, 14, 395–406. https://doi.org/10.1007/s10346-016-0759-6 Search in Google Scholar

Pijl, A., Bailly, J. S., Feurer, D., El Maaoui, M. A., Boussema, M. R., & Tarolli, P. (2020). TERRA: Terrain extraction from elevation rasters through repetitive anisotropic filtering. International Journal of Applied Earth Observation and Geoinformation, 84, 101977. https://doi.org/10.1016/j.jag.2019.101977 Search in Google Scholar

Pirotti, F., & Tarolli, P. (2010). Suitability of LiDAR Point Density and Derived Landform Curvature Maps for Channel Network Extraction. Hydrological Processes, 24, 1187–1197. https://doi.org/10.1002/hyp.7582 Search in Google Scholar

Podolszki, L., Kurečić, T., Bateson, L., & Svennevig, K. (2022). Remote Landslide Mapping, Field Validation and Model Development – An Example from Kravarsko, Croatia. Geologia Croatica, 75(1), 67–82. https://doi.org/10.4154/gc.2022.01 Search in Google Scholar

Prokešová, R., Kardoš, M., & Medveďová, A. (2010). Landslide dynamics from high-resolution aerial photographs: A case study from the Western Carpathians, Slovakia. Geomorphology, 115(1–2), 90–101. https://doi.org/10.1016/j.geomorph.2009.09.033 Search in Google Scholar

QGIS Python Plugins Repository (2019). Plugins by Kosuke ASAHI. https://plugins.qgis.org/plugins/author/Kosuke%20ASAHI/ Search in Google Scholar

QGIS Python Plugins Repository (2021). Virtual Raster Builder. https://plugins.qgis.org/plugins/vrtbuilderplugin/ Search in Google Scholar

QGIS Python Plugins Repository (2022). Qgis2threejs. https://plugins.qgis.org/plugins/Qgis2threejs/ Search in Google Scholar

QGIS Python Plugins Repository (2023). qProf 0.5.1. https://plugins.qgis.org/plugins/qProf/version/0.5.1/ Search in Google Scholar

Razak, K. A., Straatsma, M. W., van Westen, C. J., Malet, J.-P, & de Jong, S. M. (2011). Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization. Geomorphology, 126, 186–200. https://doi.org/10.1016/j.geomorph.2010.11.003 Search in Google Scholar

Roberts, A. (2001) Curvature attributes and their application to 3D interpreted horizons. First Break, 19, 85–99. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.0263-5046.2001.00142.x Search in Google Scholar

Rossi, G., Tanteri, L., Tofani, V., Vannocci, P., Moretti, S., & Casagli, N. (2018). Multitemporal UAV surveys for landslide mapping and characterization. Landslides, 15, 1045–1052. https://doi.org/10.1007/s10346-018-0978-0 Search in Google Scholar

SAGA-GIS Module Library Documentation (v2.2.0). Module Sky View Factor (2008). http://www.saga-gis.org/saga_tool_doc/2.2.0/ta_lighting_3.html Search in Google Scholar

SAGA-GIS Tool Library Documentation (v2.2.0) (2005). Module Supervised Classification for Grids. https://saga-gis.sourceforge.io/saga_tool_doc/2.2.0/imagery_classification_0.html Search in Google Scholar

SAGA-GIS Tool Library Documentation (v2.2.1). Module Slope, Aspect, Curvature (2001). https://saga-gis.sourceforge.io/saga_tool_doc/2.2.1/ta_morphometry_0.html Search in Google Scholar

SAGA-GIS Module Library Documentation (v2.2.1). Module Wombling (Edge Detection) (2015). https://saga-gis.sourceforge.io/saga_tool_doc/2.2.1/grid_filter_16.html Search in Google Scholar

Satari, B., & Kazimi, M. (2021). Extraction of linear structures from digital terrain models using deep learning. AGILE GIScience Series, 2(11), 1–14. https://doi.org/10.5194/agile-giss-2-11-2021 Search in Google Scholar

Schillaci, C., Braun, A., & Kropáček, J. (2015). Terrain analysis and landform recognition. In L. Clarke, & J. Nield, (Eds.), Geomorphological Techniques (pp. 1–18). British Society for Geomorphology. Search in Google Scholar

Shary, P. A., Sharaya, L. S., & Mitusov, A. V. (2002). Fundamental Quantitative Methods of Land Surface Analysis. Geoderma, 107, 1–32. http://dx.doi.org/10.1016/S0016-7061(01)00136-7 Search in Google Scholar

Shruthi, R. B., Kerle, N., & Jetten, V. (2011). Object-based gully feature extraction using high spatial resolution imagery. Geomorphology, 134(3–4), 260–268. https://doi.org/10.1016/j.geomorph.2011.07.003 Search in Google Scholar

Šimeková, J., Martinčeková, T., Abrahám, P., Gejdoš, T., Grenčíková, A., Grman, D., ..., & Sluka V. (2006). The Atlas of the slope stability maps of the Slovak Republic at a scale 1:50,000. MŽP SR. https://ags.geology.sk/arcgis/services/WebServices/SD/MapServer/WMSServer Search in Google Scholar

Slámová, M., Pažinová, N. B., Belčáková, I., Beljak, J., & Maliniak, P. (2023). Identification of historical trackways in forests using contextual geospatial analyses. Archaeological Prospection, 30(2), 135–152. https://doi.org/10.1002/arp.1882 Search in Google Scholar

Sofia, G., Tarolli, P., Cazorzi, F., & Dalla Fontana, G. (2010). Channel Network Identification from High-Resolution DTM: A Statistical Approach. Hydrology and Earth System Sciences, 7, 9327–9365. Search in Google Scholar

Strydom, T., & Poisot, T. (2023). SpatialBoundaries.jl: edge detection using spatial wombling. Ecography, 5, e06609. https://doi.org/10.1111/ecog.06609 Search in Google Scholar

Štular, B., Kokalj, Ž., Oštir, K., & Nuninger L. (2012). Visualisation of lidarderived relief models for detection of archaeological features. Journal of Archaeological Science, 39(11), 3354–3360. https://halshs.archivesouvertes.fr/halshs-00743691 Search in Google Scholar

Syzdykbayev, M., Karimi, B., & Karimi, H. A. A. (2020). Method for extracting some key terrain features from shaded relief of digital terrain models. Remote Sensing, 12, 2809. Search in Google Scholar

Tarolli, P., Pijl, A., Cucchiaro, S., & Wei, W. (2020). Slope instabilities in steep cultivation systems: Process classification and opportunities from remote sensing. Land Degradation & Development, 32, 1368–138. http://doi.org/10.1002/ldr.3798 Search in Google Scholar

The Geodesy, Cartography and Cadastre Authority of the Slovak Republic (2023a). Geoportal Download. Digital Terrain Model DMR3.5. https://opendata.skgeodesy.sk/static/DMR3_5/dmr3_5-10.zip Search in Google Scholar

The Geodesy, Cartography and Cadastre Authority of the Slovak Republic (2023b). ZBGIS®. Map Client Terrain. https://zbgis.skgeodesy.sk/mkzbgis/sk/teren/toc/dmr5? Search in Google Scholar

The Geodesy, Cartography and Cadastre Authority of the Slovak Republic (2023c). Aerial Laser Scanning and DMR 5.0. https://www.geoportal.sk/files/zbgis/lls/parametre-lokality-zberu-udajov-lls.pdf Search in Google Scholar

The Geodesy, Cartography and Cadastre Authority of the Slovak Republic (2023d). Orthomosaic 2023. https://zbgisws.skgeodesy.sk/zbgis_ortofoto_wms/service.svc/get Search in Google Scholar

Thomas, I. A., Jordan, P., Shine, O., Fenton, O., Mellander, P. E., Dunlop, P., & Murphy, P. N. C. (2017). Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography. International Journal of Applied Earth Observation and Geoinformation, 54, 38–52. https://doi.org/10.1016/j.jag.2016.08.012 Search in Google Scholar

Turner, D., Lucieer, A., & De Jong, S. M. (2015). Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sensing, 7, 1736–1757. https://doi.org/10.3390/rs70201736 Search in Google Scholar

Tzvetkov, J. (2018). Relief visualization techniques using free and open source GIS tools. Polish Cartographical Review, 50, 61–71. https://doi.org/10.2478/pcr-2018-0004 Search in Google Scholar

Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons, J., Nyssen, J., & Van Beek, L. (2005). The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology, 67(3–4), 351–363. https://doi.org/10.1016/j.geomorph.2004.11.001 Search in Google Scholar

Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., van Acker, V., Nyssen, J., Moeyersons, J., ..., & Vandekerckhove, L. (2007). The use of LIDARderived images for mapping old landslides under forest. Earth Surface Process, 32, 754–769. Search in Google Scholar

Wilson, J. P. (2012). Digital terrain modeling. Geomorphology, 137(1), 107–121. https://doi.org/10.1016/j.geomorph.2011.03.012 Search in Google Scholar

Yan, G., Tang, G., Chen, J., Li, F., Yang, X., Xiong, L., & Lu, D. (2024). Modeling computer sight based on DEM data to detect terrain breaks caused by gully erosion on the loess Plateau. Catena, 237, 107837. Search in Google Scholar

Zêzere, J. L. (2002). Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Natural Hazards and Earth System Sciences, 2(1/2), 73–82. https://doi.org/10.1007/s12517-017-2980-6 Search in Google Scholar

Zhao, H., Fang, X., Ding, H., Josef, S., Xiong, L., Na, J., & Tang, G. (2017). Extraction of terraces on the Loess Plateau from high-resolution DEMs and imagery utilizing object-based image analysis. ISPRS International Journal of Geo-Information, 6(6), 157. https://doi.org/10.3390/ijgi6060157 Search in Google Scholar

Zhou, X., Li, W., & Arundel, S. T. (2018). A spatio-contextual probabilistic model for extracting linear features in hilly terrains from highresolution DEM data. International Journal of Geographical Information Science, 33, 666–686. https://doi.org/10.1080/13658816.2018.1554814 Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Business and Economics, Business Management, Industries, Environmental Management, Geosciences, Geography