Open Access

Induction of Twinning in Noemi Ewes Using Two Protocols of a Recombinant Human Follicle Stimulating Hormone Versus Porcine Pituitary-Derived FSH and their Subsequent Impacts on Maternal Hormones


Cite

1. Puri-Mirza, A., Number of farm sheep in Saudi Arabia from 2014 to 2017 [Internet]. Statista; c2019 [cited 2020 August 01]. Available from: https://www.statista.com/statistics/976230/saudiarabia-number-of-sheep-in-farms/Search in Google Scholar

2. Galal, S., Gürsoy, O., Shaat, I. (2008). Awassi sheep as a genetic resource and efforts for their genetic improvement - A review. Small Ruminant Res. 79(2-3): 99-108. https://doi.org/10.1016/j.smallrumres.2008.07.01810.1016/j.smallrumres.2008.07.018Search in Google Scholar

3. Ahmadi, E., Mirzaei, A. (2016). High twin lambing rate of synchronized ewes using progestagen combined with the gonadotropins injection in breeding season. Revue Med. Vet. 167(1-2): 28-32.Search in Google Scholar

4. Mohamed, Ali, M., Zeitoun, M.M. (2016). Effectiveness of a recombinant human follicle stimulating hormone on the ovarian follicles, peripheral progesterone, estradiol-17β, and pregnancy rate of dairy cows. Vet. World. 9(7): 699-704. https://doi.org/10.14202/vetworld.2016.699-704 PMid:27536029 PMCid:PMC498311910.14202/vetworld.2016.699-704Search in Google Scholar

5. Aköz, M., Bülbül, B., Ataman, M. B., Dere, S. (2006). Induction of multiple births in Akkaraman crossbred sheep synchronized with short duration and different doses of progesterone treatment combined with PMSG outside the breeding season. Bull Vet Inst Pulawy 50, 97-100.Search in Google Scholar

6. Özbey, O., Tatli P. (2001). The effects of estrus synchronization and flushing on reproduction of Awassi ewes. J Fac Vet Med. 20, 109-115.Search in Google Scholar

7. Simoni, M., Gromoll, J., Dworniczak, B. Rolf, C., Abshagen, K., Kamischke, A., et al. (1997). Screening for deletions of the Y chromosome involving the DAZ (Deleted in Azoospermia) gene in azoospermia and severe oligozoospermia. Fertil Steril. 67(3): 542-547. https://doi.org/10.1016/S0015-0282(97)80083-010.1016/S0015-0282(97)80083-0Search in Google Scholar

8. Wu, W., Hanikezi, H., Yang, M., Gong, P., Wang, F., Tian, Y., et al. (2011). Effect of two follicle stimulating hormone (FSH) preparations and simplified superovulatory treatments on superovulatory response in Xinji fine-wool sheep. Afr J Biotechnol. 10(70): 15834-15837. https://doi.org/10.5897/AJB11.192710.5897/AJB11.1927Search in Google Scholar

9. Bartalena, L., Bogazzi, F., Pinchera, A. (1991). Thyroid function tests diagnostic protocols for investigation of thyroid dysfunction. Ann Ist Super Sanita 27(3): 531-539.Search in Google Scholar

10. Simersky, R., Swaczynova, J., Morris, D.A., Franek, M., Strand, M. (2007). Development of an ELISA-based kit for the on-farm determination of progesterone in milk. Vet Med. 52, 19-28. https://doi.org/10.17221/2009-VETMED10.17221/2009-VETMEDSearch in Google Scholar

11. Ratcliff, W.A., Carter, G.D., Dowsett, M., Hillier, S.G., Middle, J.G., Reed, M.J. (1988). Estradiol assays: applications and guidelines for the provision of clinical biochemistry service. Ann Clin Biochem. 25(5): 466-483. https://doi.org/10.1177/000456328802500502 PMid:306904310.1177/000456328802500502Search in Google Scholar

12. SAS (2000). Statistical analysis system user’s guide (8th ed.), SAS Institute, Cary NC, USA.Search in Google Scholar

13. Steel, R.G.D., Torrie, J.H. (1980). Principles and procedures of statistics: a biometrical approach. 2nd Edition, McGraw-Hill Book Company, New York.Search in Google Scholar

14. Rosati, A., Mousa, E., Van Vleck, L.D., Young, L.D. (2002). Genetic parameters of reproductive traits in sheep. Small Ruminant Res. 43(1): 65-74. https://doi.org/10.1016/S0921-4488(01)00256-510.1016/S0921-4488(01)00256-5Search in Google Scholar

15. McNatty, K.P., Lun, S., Heath, D.A., Hudson, N.L., O’Keeffe, L.E., Henderson, K.M. (1989). Binding characteristics of 125 superstcript-labelled human FSH to homozygous, heterozygous or non-carriers of a major gene(s) influencing their ovulation rate. J Reprod Fertil. 86(1): 27-38. https://doi.org/10.1530/jrf.0.0860027 PMid:250261910.1530/jrf.0.0860027Search in Google Scholar

16. Panyaboriban, S., Suwimonteerabutr, J., Swangchan-Uthai, T., Tharasanit, T., Suthikrai, W., Suadsong, S., Techakumphu, M. (2018). A simplified superovulation protocol using split-single administration of Folltropin®-V in hyaluronan: application to purebred sheep. Vet. Med. 63(07): 321-328. https://doi.org/10.17221/52/2016-VETMED10.17221/52/2016-VETMEDSearch in Google Scholar

17. Larfi, M., Ponsart, C., Nibart, M., Durand, M., Morel, A., Jeanguyot, N., et al. (2002). Influence of CIDR treatment during superovulation on embryo production and hormonal pattern in cattle. Theriogenology 58(6): 1141-1151. https://doi.org/10.1016/S0093-691X(02)00637-410.1016/S0093-691X(02)00637-4Search in Google Scholar

18. Husein, M.Q., Kridli, R.T. (2002). Reproductive responses of Awassi ewes treated with either naturally occurring progesterone or synthetic progestagen. Asian-Australas J Anim Sci.15(9): 1257-1262. https://doi.org/10.5713/ajas.2002.125710.5713/ajas.2002.1257Search in Google Scholar

19. Gootwine, E., Spencer, T.E., Bazer, F.W. (2007). Litter size-dependent intrauterine growth restriction in sheep. Animal 1(4): 547-564. https://doi.org/10.1017/S1751731107691897 PMid:2244441210.1017/S175173110769189722444412Search in Google Scholar

20. Sharma, D., Shastri, S., Sharma, P. (2016). Intrauterine growth restriction: Antenatal and postnatal aspects. Clin Med Insights Pediatr. 10, 67-83. https://doi.org/10.4137/CMPed.S40070 PMid:27441006 PMCid:PMC494658710.4137/CMPed.S40070494658727441006Search in Google Scholar

21. Barry, J.S., Anthony, R.V. (2008). The pregnant sheep as a model for human pregnancy. Theriogenology 69(1): 55-67. https://doi.org/10.1016/j.theriogenology.2007.09.021 PMid:17976713 PMCid:PMC226294910.1016/j.theriogenology.2007.09.021226294917976713Search in Google Scholar

22. Poore, K.R., Boullin, J.P., Cleal, J.K., Newman, J.P., Noakes, D.E., Hanson, M.A., Green, L.R. (2010). Sexand age-specific effects of nutrition in early gestation and early postnatal life on hypothalamo-pituitary-adrenal axis and sympatho-adrenal function in adult sheep. J.Physiol. 588(Pt 12): 2219-2237. https://doi.org/10.1113/jphysiol.2010.187682 PMid:20421287 PMCid:PMC291122210.1113/jphysiol.2010.187682291122220421287Search in Google Scholar

23. Wu, G., Bazer, F.W., Wallace, J.M., Spencer, T.E. (2006). Intrauterine growth retardation: implications for the animal sciences. J Anim Sci. 84(9): 2316-2337. https://doi.org/10.2527/jas.2006-156 PMid:1690863410.2527/jas.2006-15616908634Search in Google Scholar

24. Naaktgeboren, C., Stegeman, J.H.J. (1969). Investigation on the influence of the uterus and the placenta on fetal growth and birth weight, under special consideration of sheep. Z. Tierzuecht Zuechtungsboil. 85, 245-290. https://doi.org/10.1111/j.1439-0388.1968.tb00311.x10.1111/j.1439-0388.1968.tb00311.xSearch in Google Scholar

25. Greenwood, P.L., Slepetis, R.M., Bell, A.W. (2000). Influences on fetal and placental weights during mid to late gestation in prolific ewes well-nourished throughout pregnancy. Reprod Fertil Develop. 12(3-4): 149-156. https://doi.org/10.1071/RD00053 PMid:1130242410.1071/RD0005311302424Search in Google Scholar

26. Krause, B.J., Hanson, M.A., Casanello, P. (2011). Role of nitric oxide in placental vascular development and function. Placenta 32(11): 797-805. https://doi.org/10.1016/j.placenta.2011.06.025 PMid:21798594 PMCid:PMC321821710.1016/j.placenta.2011.06.025321821721798594Search in Google Scholar

27. Zeitoun, M., Al-Ghoneim, A., Al-Sobayil, K., Al-Dobaib, S. (2016). L-arginine modulates maternal hormonal profiles and neonatal traits during two stages of pregnancy in sheep. OJAS 6(2): 95-104. https://doi.org/10.4236/ojas.2016.6201210.4236/ojas.2016.62012Search in Google Scholar

28. Abdelsalam, M.M. Zeitoun, M.M., Ateah, M.A., Al-Hassan, A., Abdel-Salam, A.M. (2014). Impact of probiotic fermented milk, palm date extract and their mixture supplementation on neonatal traits and hematological parameters of late pregnant Najdi ewes. Int J Biol Chem. 8(1): 37-47. https://doi.org/10.3923/ijbc.2014.37.4710.3923/ijbc.2014.37.47Search in Google Scholar

29. O’Shaughnessy, P.J., McLelland, D., McBride, M.W. (1997). Regulation of luteinizing hormone-receptor and folliclestimulating hormone-receptor messenger ribonucleic acid levels during development in the neonatal mouse ovary. Biol Reprod. 57(3): 602-608. https://doi.org/10.1095/biolreprod57.3.602 PMid:928299710.1095/biolreprod57.3.6029282997Search in Google Scholar

30. François, C.M., Petit, F., Giton, F., Gougeon, A., Ravel, C., Magre, S., Cohen-Tannoudji, J., Guigon, C.J. (2017). A novel action of follicle stimulating hormone in the ovary promotes estradiol production without inducing excessive follicular growth before puberty. Sci Rep. 7, 1-12. https://doi.org/10.1038/srep46222 PMid:28397811 PMCid:PMC538768210.1038/srep46222538768228397811Search in Google Scholar

31. ASRM Practice Committee: American Society for Reproductive Medicine Birmingham, Alabama [Internet]. Gonadotropin preparations: past, present, and future perspectives. [Fertil Steril. 90: S13-20. November 2008]. https://www.fertstert.org/article/S0015-0282(08)03368-2/fulltexthttps://doi.org/10.1016/j.fertnstert.2008.08.031 PMid:1900760910.1016/j.fertnstert.2008.08.03119007609Search in Google Scholar

32. Howles, C.M. (1996). Genetic engineering of human FSH (GONAL-F). Human Reprod Update 2(2): 172-191. https://doi.org/10.1093/humupd/2.2.172 PMid:907941210.1093/humupd/2.2.1729079412Search in Google Scholar

33. Huszenicza, G., Kulscar, M., Rudas, P. (2002). Clinical endocrinology of thyroid gland functions in ruminants. Vet Med Czech. 47(7): 199-210. https://doi.org/10.17221/5824-VETMED10.17221/5824-VETMEDSearch in Google Scholar

34. Hayashi, M., Maruo, T., Matsuo, H., Mochizuki, M. (1985). The bio-cellular effect of thyroid hormone on functional differentiation of porcine granulosa cells in culture. Nihon Naibunpi Gakkai Zasshi 61(10): 1189-1196. https://doi.org/10.1507/endocrine1927.61.10_1189 PMid:300287610.1507/endocrine1927.61.10_11893002876Search in Google Scholar

35. Maruo, T., Hayashi, M., Matsuo, H., Yamamoto, T., Okada, H., Mochizuki, M. (1987). The role of thyroid hormone as a biological amplifier of the actions of follicle stimulating hormone in the functional differ¬entiation of cultured porcine granulosa cells. Endocrinology 121(4): 1233-1241. https://doi.org/10.1210/endo-121-4-1233 PMid:311576110.1210/endo-121-4-12333115761Search in Google Scholar

36. Wakim, A.N., Polizotto, S.L., Burholt, D.R. (1995). Influence of thyroxin on human granulosa cell steroidogenesis in vitro. J Assist Reprod Genet. 12(4): 274-277. https://doi.org/10.1007/BF02212931 PMid:758002510.1007/BF022129317580025Search in Google Scholar

37. Wakim, A.N., Polizotto, S.L., Burholt, D.R. (1995). Augmentation by thyroxin of human granulosa cells gonadotropin-induced steroidogenesis. Hum Reprod. 10(11): 2845-2848. https://doi.org/10.1093/oxfordjournals.humrep.a135805 PMid:874703010.1093/oxfordjournals.humrep.a1358058747030Search in Google Scholar

38. Spicer, L.J., Alonso, J., Chamberlain, C. S. (2001). Effects of thyroid hormones on bovine granulosa and thecal cell function in vitro: dependence on insulin and gonadotropins. J Dairy Sci. 84(5): 1069-1076. https://doi.org/10.3168/jds.S0022-0302(01)74567-510.3168/jds.S0022-0302(01)74567-5Search in Google Scholar

eISSN:
1857-7415
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Medicine, Basic Medical Science, Veterinary Medicine