Cite

1. Ghoneim, I.M., Waheed, M.M., El-Bahr, S.M., Alhaider, A.K., Al-Eknah, M.M. (2013). Comparison of some biochemical and hormonal constituents of oversized follicles and preovulatory follicles in camels (Camelus dromedarius). Theriogenology 79, 647–652. https://doi.org/10.1016/j.theriogenology.2012.11.019 PMid:2329031210.1016/j.theriogenology.2012.11.019PMid:23290312Open DOISearch in Google Scholar

2. Aller, J.F., Callejas, S.S., Alberio, R.H. (2013). Biochemical and steroid concentrations in follicular fluid and blood plasma in different follicular waves of the estrous cycle from normal and superovulated beef cows. Anim Reprod Sci. 142, 113-120. https://doi.org/10.1016/j.anireprosci.2013.09.009 PMid:2413976210.1016/j.anireprosci.2013.09.009PMid:24139762Open DOISearch in Google Scholar

3. Leroy, J.L.M.R., Vanholder, T., Delanghe, J.R., Opsomer, G., Van Soom, A., Bols, P.E.J., De Kruif, A. (2004). Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Anim Reprod Sci. 80, 201–211. https://doi.org/10.1016/S0378-4320(03)00173-810.1016/S0378-4320(03)00173-8Open DOISearch in Google Scholar

4. Murayama, C., Yamasaki, E., Miyamoto, A., Shimizu, T. (2015). Effect in dedicator of cytokinesis 6 (DOCK6) on steroid production in theca cells of follicular cysts. Biochem Biophys Res Commun. 462, 415-419. https://doi.org/10.1016/j.bbrc.2015.05.005 PMid:2597667610.1016/j.bbrc.2015.05.005PMid:25976676Open DOISearch in Google Scholar

5. Diaz, P.U., Stangaferro, M.L., Matiller, V., Salvetti, N.R., Gareis, N.C., et al. (2015). Characterization of persistent follicles induced by prolonged treatment with progesterone in dairy cows: An experimental model for the study of ovarian follicular cysts. Theriogenology 84, 1149–1160. https://doi.org/10.1016/j.theriogenology.2015.06.015 PMid:2618732910.1016/j.theriogenology.2015.06.015PMid:26187329Open DOISearch in Google Scholar

6. Kaneko J.J., Harvey H.W., Bruss M.L. (1997). Clinical biochemistry of domestic animals. In: Kaneko J.J., Harvey H.W., Bruss M.L. (Eds.), (p.932), San Diego: Academic Press.Search in Google Scholar

7. Spicer, L.J., Chamberlain, C.S. (1998). Influence of cortisol on insulin- and insulin-like growth factor 1 (IGF-1)- induced steroid production and on IGF-1 receptors in cultured bovine granulosa cells and thecal cells. Endocrine 9 (2) : 153–161. https://doi.org/10.1385/ENDO:9:2:15310.1385/ENDO:9:2:153Open DOISearch in Google Scholar

8. Iwata, H., Inoue, J., Kimura, K., Kuge, T., Kuwayama, T., Monji, Y. (2006). Comparison between the characteristics of follicular fluid and the developmental competence of bovine oocytes. Anim Reprod Sci. 91, 215–223. https://doi.org/10.1016/j.anireprosci.2005.04.006 PMid:1596126510.1016/j.anireprosci.2005.04.006Search in Google Scholar

9. Bellier, S. (2010). Interpretation and usual values of blood parameters in veterinary clinical biochemistry. Revue Francophone Des Laboratoires 420.10.1016/S1773-035X(10)70419-6Search in Google Scholar

10. Acar, Baki, D., Birdane, M.K., Dogan, N., Gurler, H. (2013). Effect of the stage of estrous cycle on follicular population, oocyte yield and quality, and biochemical composition of serum and follicular fluid in Anatolian water buffalo. Anim Reprod Sci. 137, 8-14. https://doi.org/10.1016/j.anireprosci.2012.12.004 PMid:2331784910.1016/j.anireprosci.2012.12.004Search in Google Scholar

11. Alves, B.G., Alves, K.A., Lúcio, A.C., Martins, M.C., Silva, T.H., Alves, B.G., et al. (2014). Ovarian activity and oocyte quality associated with the biochemical profile of serum and follicular fluid from Girolando dairy cows postpartum. Anim Reprod Sci. 146, 117–125. https://doi.org/10.1016/j.anireprosci.2014.02.019 PMid:2467482310.1016/j.anireprosci.2014.02.019PMid:24674823Open DOISearch in Google Scholar

12. Duffield, T.F. (2000). Subclinical ketosis in lactating dairy cattle. Vet Clin North Am Food Anim Pract. 16, 231-253. https://doi.org/10.1016/S0749-0720(15)30103-110.1016/S0749-0720(15)30103-1Open DOISearch in Google Scholar

13. Yousefdoost, S., Samadi, F., Moghaddam, G., Hassani, S., Jafari Ahangari, Y. (2012). A comparison of hormonal, metabolite and mineral profiles between Holstein cows with and without ovarian cysts. IJAS. 2 (12): 1107-1115.Search in Google Scholar

14. Probo, M., Comin, A., Cairoli, F., Faustini, M., Kindahl, H., De Amicis, I., Veronesi, M.C. (2011). Selected metabolic and hormonal profiles during maintenance of spontaneous ovarian cysts in dairy cows. Reprod Dom Anim. 46, 448–454. https://doi.org/10.1111/j.1439-0531.2010.01688.x PMid:2082558310.1111/j.1439-0531.2010.01688.xPMid:20825583Open DOISearch in Google Scholar

15. Brugère-Picoux, J. (1995). Metabolic diseases and clinical biochemistry of the dairy cow. La dépêche technique. 46, 30.Search in Google Scholar

16. Yotov, S.A., Atanasov, A.S., Georgiev, G.B., Dineva, J.D., Palova, N.A. (2014). Investigation on some biochemical parameters and effect of hormonal treatment in anoestrous dairy cows with cystic ovarian follicle. Asian Pac J Reprod. 3 (1): 41-45. https://doi.org/10.1016/S2305-0500(13)60183-910.1016/S2305-0500(13)60183-9Open DOISearch in Google Scholar

17. Bender, K., Walsh, S., Evans, A.C.O., Fair, T., Brennan, L. (2010). Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 139, 1047–1055. https://doi.org/10.1530/REP-10-0068 PMid:2038578210.1530/REP-10-0068PMid:20385782Open DOISearch in Google Scholar

18. Sun, Y.L., Ping, Z.G., Li, G.J., Sun, Y.F., Yi, K.L., Chen, L., Li, X.Y., Wang, X.L., Zhou, X. (2011). Comparative proteomic analysis of follicular fluids from normal and cystic follicles in sows. Reprod Dom Anim. 46, 889–895. https://doi.org/10.1111/j.1439-0531.2011.01760.x PMid:2136671610.1111/j.1439-0531.2011.01760.xPMid:21366716Open DOISearch in Google Scholar

19. Fahiminiya, S., Gérard, N. (2010). Follicular fluid in mammals. Gynecol Obstet Fertil. 38, 402–404. https://doi.org/10.1016/j.gyobfe.2010.04.010 PMid:2057655110.1016/j.gyobfe.2010.04.010PMid:20576551Open DOISearch in Google Scholar

20. Khan, F.A., Das, G.K., Pande, M., Pathak, M.K., Sarkar, M. (2011). Biochemical and hormonal composition of follicular cysts in water buffalo (Bubalus bubalis). Anim Reprod Sci. 124, 61–64. https://doi.org/10.1016/j.anireprosci.2011.02.020 PMid:2139290110.1016/j.anireprosci.2011.02.020PMid:21392901Open DOISearch in Google Scholar

21. Arshad, H.M., Ahmad, N., Ziaur, R., Samad, H.A., Akhtar, N., Ali, S. (2005). Studies on some biochemical constituents of ovarian follicular fluid and peripheral blood in buffaloes. Pak Vet J. 25 (4): 155-158.Search in Google Scholar

22. El-Bahr, S.M., Ghoneim, I.M., Waheed, M.M. (2015). Biochemical and hormonal analysis of follicular fluid and serum of female dromedary camels (Camelus dromedarius) with different sized ovarian follicles. Anim Reprod Sci. 159, 98–103. https://doi.org/10.1016/j.anireprosci.2015.06.002 PMid:2607777010.1016/j.anireprosci.2015.06.002PMid:26077770Open DOISearch in Google Scholar

23. Sutton-McDowall, M.L., Yelland, R., MacMillan, K.L., Robker, R.L., Thompson, J.G. A. (2014). Study relating the composition of follicular fluid and blood plasma from individual Holstein dairy cows to the in vitro developmental competence of pooled abattoir-derived oocytes. Theriogenology 82, 95-103. https://doi.org/10.1016/j.theriogenology.2014.03.011 PMid:2474609710.1016/j.theriogenology.2014.03.011PMid:24746097Open DOISearch in Google Scholar

24. Zhao, H., Zhao, Y., Li, T., Li, M., Li, J., Li, R., Liu, P., Yu, Y., Qiao, J. (2015). Metabolism alteration in follicular niche: The nexus among intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome. Free Radic Biol Med 86, 295 – 307. https://doi.org/10.1016/j.freeradbiomed.2015.05.013 PMid:2605793710.1016/j.freeradbiomed.2015.05.013PMid:26057937Open DOISearch in Google Scholar

25. Nandi, S., Girish, K.V., Manjunatha, B.M., Gupta, P.S.P. (2007). Biochemical composition of ovine follicular fluid in relation to follicle size. Dev Growth Differ. 49, 61–66. https://doi.org/10.1111/j.1440-169X.2007.00901.x PMid:1722734510.1111/j.1440-169X.2007.00901.xPMid:17227345Open DOISearch in Google Scholar

26. Wise, T. (1987). Biochemical analysis of bovine follicular fluid: albumin, total protein, lysosomal enzymes, ions, steroids and ascorbic acid content in relation to follicular size, rank, atresia classification and day of estrous cycle. J Anim Sci. 64, 1153-1169. https://doi.org/10.2527/jas1987.6441153x PMid:357102410.2527/jas1987.6441153xPMid:3571024Open DOISearch in Google Scholar

27. Maniwa, J., Izumi, S., Isobe, N., Terada, T. (2005). Studies on substantially increased proteins in follicular fluid of bovine ovarian follicular cysts using 2-D PAGE and MALDI-TOF MS. Reprod Biol Endocrinol. 3, 23. https://doi.org/10.1186/1477-7827-3-23 PMid:15941490 PMCid:PMC117798810.1186/1477-7827-3-23PMid:15941490PMCid:PMC1177988Open DOISearch in Google Scholar

28. Isobe, N., Yoshimura, Y. (2000). Localization of apoptotic cells in the cystic ovarian follicles of cows: a DNA-end labelling histochemical study. Theriogenology 53, 897–904. https://doi.org/10.1016/S0093-691X(00)00238-710.1016/S0093-691X(00)00238-7Open DOISearch in Google Scholar

29. Braw-Tal, R., Pen, S., Roth, Z. (2009). Ovarian cysts in high-yielding dairy cows. Theriogenology 72, 690–698. https://doi.org/10.1016/j.theriogenology.2009.04.027 PMid:1955947310.1016/j.theriogenology.2009.04.027PMid:19559473Open DOISearch in Google Scholar

30. Hudson, N.L., Berg, M.C., Green, M.P., Back, P.J., Thorstensen, E.B., Peterson, A.J., Pitman, J.L., McNatty, K.P. (2014). The microenvironment of the ovarian follicle in the postpartum dairy cows: Effects on reagent transfer from cumulus cells to oocytes in vitro. Theriogenology 82, 563–573. https://doi.org/10.1016/j.theriogenology.2014.05.016 PMid:2495863510.1016/j.theriogenology.2014.05.016PMid:24958635Open DOISearch in Google Scholar

31. Ménézo, Y., Guérin, P. (2001). In: C. Thibault, Levasseur, M.C. (Eds.), Reproduction in mammals and humans (pp.410-421). Paris: Co-ed INRAEllipses.Search in Google Scholar

32. Rabiee, A.R., Lean, I.J. (2000). Uptake of glucose and cholesterol by the ovary of sheep and cattle and the influence of arterial LH concentrations. Anim Reprod Sci. 64, 199-209. https://doi.org/10.1016/S0378-4320(00)00208-610.1016/S0378-4320(00)00208-6Open DOISearch in Google Scholar

33. Hein, G.J., Panzani, C.G., Rodríguez, F.M., Salvetti, N.R., Díaz, P.U., Gareisa, N.C., Benítez, G.A., Ortega, H.H., Rey, F. (2015). Impaired insulin signaling pathway in ovarian follicles of cows with cystic ovarian disease. Anim Reprod Sci. 156, 64–74. https://doi.org/10.1016/j.anireprosci.2015.02.010 PMid:2581370010.1016/j.anireprosci.2015.02.010PMid:25813700Open DOISearch in Google Scholar

34. Vanholder, T., Leroy, J.L.M.R., Dewulf, J., Duchateau, L., Coryn, M., De Kruif, A., Opsomer, G. (2005). Hormonal and metabolic profiles of high-yielding dairy cows prior to ovarian cyst formation or first ovulation post-partum. Reprod Dom Anim. 40, 460 – 467. https://doi.org/10.1111/j.1439-0531.2005.00601.x PMid:1614995310.1111/j.1439-0531.2005.00601.xPMid:16149953Open DOISearch in Google Scholar

35. Amweg, A.N., Salvetti, N.R., Stangaferro, M.L., Paredes, A.H., Lara, H.H., Rodríguez, F.M., Ortega, H.H. (2013). Ovarian localization of 11β-hydroxysteroid dehydrogenase (11βHSD): effects of ACTH stimulation and its relationship with bovine cystic ovarian disease. Domest Anim Endocrinol. 45, 126–140. https://doi.org/10.1016/j.domaniend.2013.07.001 PMid:2397249110.1016/j.domaniend.2013.07.001PMid:23972491Open DOISearch in Google Scholar

36. Spicer, L.J., Zinn, S.A. (1987). Relationship between concentrations of cortisol in ovarian follicular fluid and various biochemical markers of follicular differentiation in cyclic and anovulatory cows. J Reprod Fert. 81, 221-226. https://doi.org/10.1530/jrf.0.081022110.1530/jrf.0.0810221Open DOISearch in Google Scholar

37. Peter, A.T., Peter, I., Simon, J.E., Luker C.W., Bosu, W.T.K. (1990). Site of action for endotoxin-induced cortisol release in the suppression of preovulatory luteinizing hormone surges. Theriogenology 33 (3): 637-643. https://doi.org/10.1016/0093-691X(90)90540-A10.1016/0093-691X(90)90540-Open DOISearch in Google Scholar

38. Kawate, N., Inaba, T., Mori, J. (1993). Effects of cortisol on the amounts of estradiol-17β and progesterone secreted and the number of luteinizing hormone receptors in cultured bovine granulosa cells. Anim Reprod Sci. 32 (15): 15-25. https://doi.org/10.1016/0378-4320(93)90054-U10.1016/0378-4320(93)90054-Open DOISearch in Google Scholar

39. Sunak, N., Green, D.F., Abeydeera, L.R., Thurston, L.M., Michael, A.E. (2007). Implication of cortisol and 11b-hydroxysteroid dehydrogenase enzymes in the development of porcine (Sus scrofa domestica) ovarian follicles and cysts. Reproduction 133, 1149–1158. https://doi.org/10.1530/REP-07-0003 PMid:1763616910.1530/REP-07-0003PMid:17636169Open DOISearch in Google Scholar

eISSN:
1857-7415
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Medicine, Basic Medical Science, Veterinary Medicine