Open Access

A Report on the Sources Used for Leo Plasma Experimental Simulation

,  and   
Jul 29, 2025

Cite
Download Cover

Williams, J. D., Farnell, C. C., Shoemaker, P. B., Vaughn, J. A., & Schneider, T. A. (2004). Ground-based simulation of low earth orbit plasma conditions: plasma generation and characterization. In 8th Spacecraft Charging Technology Conference, NASA/CP-2004-213091. SEE 20040111031. Available at: https://archive.org/stream/nasa_techdoc_20040111031/20040111031_djvu.txt Search in Google Scholar

Raitses, Y., Chiu, Y. H., & Stratton, B. C. (2023). Characterization of a Broad Beam Kaufman-Type Ion Source Operated with CHF3 and O2. Journal of Vacuum Science & Technology A, 41 (5), 053104. https://doi.org/10.1116/6.0002766 Search in Google Scholar

Huber, M. C. E. (1984). Hollow Cathode Discharges – Analytical Applications. NIST Technical Series Publications, 89(2), 143–156. https://doi.org/10.6028/jres.089.009 Search in Google Scholar

Maldonado, S., & Choueiri, E. Y. (2023). Hollow Cathode Discharge Instability Onset in Electric Thrusters. Journal of Applied Physics, 135 (12), 123301. https://doi.org/10.1063/5.0188988 Search in Google Scholar

Csiky, G. A. (1969). Measurements of Some Properties of a Discharge from a Hollow Cathode. NASA Technical Reports Server. NASA-TN-D-4966. Available at: https://ntrs.nasa.gov/citations/19690008515 Search in Google Scholar

Kumar, R., Ahuja, R., Safvan, C. P., Kanjilal, D., & Roy, A. (2011). Development of penning ion source for 50 KeV ion accelerator. In InPAC-2011: 5. DAE-BRNS Indian Particle Accelerator Conference, 15–18 February 2011, New Delhi, India. Search in Google Scholar

Dandl, R. A. (2019). Characterization of the ExB penning discharge using electrostatic probes. In Electric Rocket Propulsion Society 36th International Electric Propulsion Conference. 15–20 September 2019, University of Vienna, Vienna, Austria. IEPC-2019-433. Search in Google Scholar

Vayner, B., Ferguson, D. C., & Galofaro, J. T. (2002). Experimental study of arcing on high voltage solar arrays. In 17th Space Photovoltaic Research and Technology Conference. 11–13 September 2002, Cleveland, Ohio. Search in Google Scholar

Vayner, B., Galofaro, J. T., & Ferguson, D. C. (2004). Interactions of High-Voltage Solar Arrays with Their Plasma Environment: Ground Tests. Journal of Spacecraft and Rockets, 41 (6), 1042. https://arc.aiaa.org/doi/abs/10.2514/1.B38346 Search in Google Scholar

Ferguson, D. C. (1991). LEO Space Plasma Interactions. N91-30249, 47–11. https://ntrs.nasa.gov/api/citations/19910020935/downloads/19910020935.pdf Search in Google Scholar

Amemiya, H., & Ogawa, K. (1997). Characteristics of a Hollow-Cathode Discharge Containing Negative Ions. J. Phys. D: Appl. Phys., 30 (5), 879. IOP Publishing Ltd. https://doi.org/10.1088/0022-3727/30/5/021 Search in Google Scholar

Butcher, K. S. A. (2021). Hollow Cathode Plasma Sources for Plasma Enhanced ALD and PECVD. Coatings, 11(12), 1506. https://doi.org/10.3390/coatings11121506 Search in Google Scholar

Vayner Boris, V. (2024). Private communication. Search in Google Scholar

Tyushev, M., Papahn Zadeh, M., Chopra, N. S., Raitses, Y., Romadanov, I., Likhanskii, A., … & Smolyakov, A. (2023). Mode Transitions and Spoke Structures in E×B Penning Discharge. Physics of Plasmas, 32, 013511. https://doi.org/10.1063/5.0238577 Search in Google Scholar

Winchester, M. R., & Payling, R. (2004). Radio-Frequency Glow Discharge Spectrometry: A Critical Review. Spectrochimica Acta Part B, 59, 607–666. https://doi.org/10.1016/j.sab.2004.02.013 Search in Google Scholar

Abdel-Aziz Yehia, A., Abd El-Hameed, A. M., El-Tokhy, F. S., Ghitas, A., Selim, I., & Sabry, M. (2013). Ground-Based Simulation for the Effect of Space Plasma on Spacecraft. Advances in Space Research, 51, 133–142. https://doi.org/10.1016/j.asr.2012.12.014 Search in Google Scholar

Kennedy, M. D. (1995). Low-Energy Radio-Frequency Sputtering of Copper, Anodized Aluminum, and Kapton by Argon Plasma Ions. PhD Thesis, Department of Physics, Case Western Reserve University. Search in Google Scholar

Tahara, H., & Masuyama, T. (2006). Ground-Based Experiment of Electric Breakdown of Spacecraft Surface Insulator in an Ambient Plasma Environment. Plasma Science IEEE Transactions on, 34 (5), 1959–1966. https://doi.org/10.1109/TPS.2006.883259 Search in Google Scholar

Chen, L., Zhang, Y., Zhang, S., & Li, J. (2025). Electron Cyclotron Resonance (ECR) Plasmas: A Topical Review through Representative Results Obtained over the Last 60 Years. Journal of Applied Physics, 137 (7), 070701. https://doi.org/10.1063/5.0249342 Search in Google Scholar

Pomathiod, L., Debrie, R., Arnal, Y., & Pelletier, J. (1984). Microwave Excitation of Large Volumes of Plasma at Electron Cyclotron Resonance in Multipolar Confinement. Phys. Lett. A, 106 (6), 301–303. https://doi.org/10.1016/0375-9601(84)90524-3 Search in Google Scholar

Tsai, C. C., Haselton, H. H., Livesey, R. L., Schechter, D. E., & Whealton, J. H. (1991). A Compact Microwave Ion Source for Neutral Beam Injection. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 56–57 (Part 2), 1166–1169. https://doi.org/10.1016/0168-583X(91)95749-X Search in Google Scholar

Chabert, P., & Braithwaite, N. S. J. (2023). Impedance Matching Assistance Based on Frequency Modulation for Capacitively Coupled Plasmas. Journal of Applied Physics, 137 (3), 033301. https://doi.org/10.1063/5.0226790 Search in Google Scholar

Raith, A., & Hutton, R. C. (2004). Glow Discharge Optical Emission Spectrometry: A Review of Recent Developments. Journal of Analytical Atomic Spectrometry, 19 (1), 2–11. https://doi.org/10.1039/B309356K Search in Google Scholar

Woo, H.-G. (2014). Discharge Phenomena on Antenna Surface Radiating High-Power Microwave in High-Density Plasma Environment. PhD Thesis, Kyushu Institute of Technology. Available at: https://kyutech.repo.nii.ac.jp/record/4120/files/D-227_kou_k_368.pdf Search in Google Scholar

Enloe, C. L., Habash Krause, L., McHarg, M. G., Nava, O., Shoemaker, P. B., Ehmann, E., & Williams, J. D. (2004). Characterization of a Plasma Source for Ground-Based Simulation of LEO Plasma Conditions. American Institute of Aeronautics and Astronautics, AIAA-2004-5668. https://arc.aiaa.org/doi/pdfplus/10.2514/1.A34879 Search in Google Scholar

Rubin, B., Farnell, C., Williams, J., Vaughn, J., Schneider, T., & Ferguson, D. (2009). Magnetic Filter Type Plasma Source for Ground-Based Simulation of Low Earth Orbit Environment. Plasma Sources Science and Technology, 18 (2), 025015. https://doi.org/10.1088/0963-0252/18/2/025015 Search in Google Scholar

Li, M., Liu, Y., & Lei, J. (2023). Design and Fabrication of a Magnetic Filter Source to Produce Ionospheric-Like Plasma. AIP Advances, 13 (4), 045208. https://doi.org/10.1063/5.0126931 Search in Google Scholar

Charles, C. (2009). Plasmas for Spacecraft Propulsion. Journal of Physics D: Applied Physics, 42 (16), 163001. https://doi.org/10.1088/0022-3727/42/16/163001 Search in Google Scholar

Lai, S. T., & Miller, C. (2020). Retarding Potential Analyzer: Principles, Designs, and Space Applications. AIP Advances, 10 (9), 095324. https://doi.org/10.1063/5.0014266 Search in Google Scholar

Allen, J. E. (2009). Probe Measurements in Laboratory Plasmas. Plasma Sources Science and Technology, 18 (1), 014004. https://doi.org/10.1088/0963-0252/18/1/014004 Search in Google Scholar

Cho, M., Ramasamy, R., Hikita, M., Tanaka, K., & Sasaki, S. (2002). Journal of Spacecraft and Rockets, 39 (3), 392–399. https://doi.org/10.2514/2.3838 Search in Google Scholar

Chen, F. F. (2006). Introduction to Plasma Physics and Controlled Fusion (2nd ed.). Springer. Search in Google Scholar

Goebel, D. M., & Katz, I. (2008). Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Wiley. Search in Google Scholar

Yildiz, M. S., & Celik, M. (2019). Plume Diagnostics of BUSTLab Microwave Electrothermal Thruster Using Langmuir and Faraday Probes. Plasma Science and Technology, 21 (4), 045505. https://doi.org/10.1088/2058-6272/aaf280 Search in Google Scholar

Aanesland, A., Meige, A., & Chabert, P. (2009). Electric Propulsion Using Ion-Ion Plasmas. Journal of Physics: Conference Series, 162, 012009. https://doi.org/10.1088/1742-6596/162/1/012009 Search in Google Scholar

Raitses, Y., Rodriguez, E., Skoutnev, V., Powis, A., Kraus, B., & Kaganovich, I. (2019). Characterization of the ExB Penning Discharge Using Electrostatic Probes. In 36th International Electric Propulsion Conference, IEPC-2019-433. 15–20 September, 2019, University of Vienna, Vienna, Austria. Available at: https://htx.pppl.gov/conferencepapers.html Search in Google Scholar

Cortázar, O. D., Megía-Macías, A., Tarvainen, O., Kalvas, T., & Koivisto, H. (2015). The Relationship Between Visible Light Emission and Species Fraction of the Hydrogen Ion Beams Extracted from 2.45 GHz Microwave Discharge. Review of Scientific Instruments, 86 (8), 083309. https://doi.org/10.1063/1.4928475 Search in Google Scholar

Griem, H. R. (1997). Principles of Plasma Spectroscopy. Cambridge University Press. Search in Google Scholar

Mazouffre, S. (2016). Laser-Induced Fluorescence Spectroscopy for Electric Propulsion. Plasma Sources Science and Technology, 25 (3), 033002. https://doi.org/10.1088/0963-0252/25/3/033002 Search in Google Scholar

Lu, C., Zhang, Z., Sun, B., Zhang, X., & Li, J. (2023). Transition Characteristics in an Indium Tin Oxide Hollow Cathode. Physics of Plasmas, 32 (3), 033509. https://doi.org/10.1063/5.0135271 Search in Google Scholar

Patil, S., Sharma, S., Sengupta, S., Sen, A., & Kaganovich, I. (2022). Electron Bounce-Cyclotron Resonance in Capacitive Discharges at Low Magnetic Fields. Physical Review Research, 4 (1), 013059. https://doi.org/10.1103/PhysRevResearch.4.013059 Search in Google Scholar

Xie, Z.-Q. (1997). State of the art of ECR ion sources. In Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167), (pp. 2662–2666). 16 May 1997, Vancouver, BC, Canada. https://doi.org/10.1109/PAC.1997.752725 Search in Google Scholar

Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics