This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Williams, J. D., Farnell, C. C., Shoemaker, P. B., Vaughn, J. A., & Schneider, T. A. (2004). Ground-based simulation of low earth orbit plasma conditions: plasma generation and characterization. In 8thSpacecraft Charging Technology Conference, NASA/CP-2004-213091. SEE 20040111031. Available at: https://archive.org/stream/nasa_techdoc_20040111031/20040111031_djvu.txtSearch in Google Scholar
Raitses, Y., Chiu, Y. H., & Stratton, B. C. (2023). Characterization of a Broad Beam Kaufman-Type Ion Source Operated with CHF3 and O2. Journal of Vacuum Science & Technology A, 41 (5), 053104. https://doi.org/10.1116/6.0002766Search in Google Scholar
Huber, M. C. E. (1984). Hollow Cathode Discharges – Analytical Applications. NIST Technical Series Publications, 89(2), 143–156. https://doi.org/10.6028/jres.089.009Search in Google Scholar
Maldonado, S., & Choueiri, E. Y. (2023). Hollow Cathode Discharge Instability Onset in Electric Thrusters. Journal of Applied Physics, 135 (12), 123301. https://doi.org/10.1063/5.0188988Search in Google Scholar
Csiky, G. A. (1969). Measurements of Some Properties of a Discharge from a Hollow Cathode. NASA Technical Reports Server. NASA-TN-D-4966. Available at: https://ntrs.nasa.gov/citations/19690008515Search in Google Scholar
Kumar, R., Ahuja, R., Safvan, C. P., Kanjilal, D., & Roy, A. (2011). Development of penning ion source for 50 KeV ion accelerator. In InPAC-2011: 5. DAE-BRNS Indian Particle Accelerator Conference, 15–18 February 2011, New Delhi, India.Search in Google Scholar
Dandl, R. A. (2019). Characterization of the ExB penning discharge using electrostatic probes. In Electric Rocket Propulsion Society 36thInternational Electric Propulsion Conference. 15–20 September 2019, University of Vienna, Vienna, Austria. IEPC-2019-433.Search in Google Scholar
Vayner, B., Ferguson, D. C., & Galofaro, J. T. (2002). Experimental study of arcing on high voltage solar arrays. In 17thSpace Photovoltaic Research and Technology Conference. 11–13 September 2002, Cleveland, Ohio.Search in Google Scholar
Vayner, B., Galofaro, J. T., & Ferguson, D. C. (2004). Interactions of High-Voltage Solar Arrays with Their Plasma Environment: Ground Tests. Journal of Spacecraft and Rockets, 41 (6), 1042. https://arc.aiaa.org/doi/abs/10.2514/1.B38346Search in Google Scholar
Ferguson, D. C. (1991). LEO Space Plasma Interactions. N91-30249, 47–11. https://ntrs.nasa.gov/api/citations/19910020935/downloads/19910020935.pdfSearch in Google Scholar
Amemiya, H., & Ogawa, K. (1997). Characteristics of a Hollow-Cathode Discharge Containing Negative Ions. J. Phys. D: Appl. Phys., 30 (5), 879. IOP Publishing Ltd. https://doi.org/10.1088/0022-3727/30/5/021Search in Google Scholar
Butcher, K. S. A. (2021). Hollow Cathode Plasma Sources for Plasma Enhanced ALD and PECVD. Coatings, 11(12), 1506. https://doi.org/10.3390/coatings11121506Search in Google Scholar
Tyushev, M., Papahn Zadeh, M., Chopra, N. S., Raitses, Y., Romadanov, I., Likhanskii, A., … & Smolyakov, A. (2023). Mode Transitions and Spoke Structures in E×B Penning Discharge. Physics of Plasmas, 32, 013511. https://doi.org/10.1063/5.0238577Search in Google Scholar
Winchester, M. R., & Payling, R. (2004). Radio-Frequency Glow Discharge Spectrometry: A Critical Review. Spectrochimica Acta Part B, 59, 607–666. https://doi.org/10.1016/j.sab.2004.02.013Search in Google Scholar
Abdel-Aziz Yehia, A., Abd El-Hameed, A. M., El-Tokhy, F. S., Ghitas, A., Selim, I., & Sabry, M. (2013). Ground-Based Simulation for the Effect of Space Plasma on Spacecraft. Advances in Space Research, 51, 133–142. https://doi.org/10.1016/j.asr.2012.12.014Search in Google Scholar
Kennedy, M. D. (1995). Low-Energy Radio-Frequency Sputtering of Copper, Anodized Aluminum, and Kapton by Argon Plasma Ions. PhD Thesis, Department of Physics, Case Western Reserve University.Search in Google Scholar
Tahara, H., & Masuyama, T. (2006). Ground-Based Experiment of Electric Breakdown of Spacecraft Surface Insulator in an Ambient Plasma Environment. Plasma Science IEEE Transactions on, 34 (5), 1959–1966. https://doi.org/10.1109/TPS.2006.883259Search in Google Scholar
Chen, L., Zhang, Y., Zhang, S., & Li, J. (2025). Electron Cyclotron Resonance (ECR) Plasmas: A Topical Review through Representative Results Obtained over the Last 60 Years. Journal of Applied Physics, 137 (7), 070701. https://doi.org/10.1063/5.0249342Search in Google Scholar
Pomathiod, L., Debrie, R., Arnal, Y., & Pelletier, J. (1984). Microwave Excitation of Large Volumes of Plasma at Electron Cyclotron Resonance in Multipolar Confinement. Phys. Lett. A, 106 (6), 301–303. https://doi.org/10.1016/0375-9601(84)90524-3Search in Google Scholar
Tsai, C. C., Haselton, H. H., Livesey, R. L., Schechter, D. E., & Whealton, J. H. (1991). A Compact Microwave Ion Source for Neutral Beam Injection. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 56–57 (Part 2), 1166–1169. https://doi.org/10.1016/0168-583X(91)95749-XSearch in Google Scholar
Chabert, P., & Braithwaite, N. S. J. (2023). Impedance Matching Assistance Based on Frequency Modulation for Capacitively Coupled Plasmas. Journal of Applied Physics, 137 (3), 033301. https://doi.org/10.1063/5.0226790Search in Google Scholar
Raith, A., & Hutton, R. C. (2004). Glow Discharge Optical Emission Spectrometry: A Review of Recent Developments. Journal of Analytical Atomic Spectrometry, 19 (1), 2–11. https://doi.org/10.1039/B309356KSearch in Google Scholar
Woo, H.-G. (2014). Discharge Phenomena on Antenna Surface Radiating High-Power Microwave in High-Density Plasma Environment. PhD Thesis, Kyushu Institute of Technology. Available at: https://kyutech.repo.nii.ac.jp/record/4120/files/D-227_kou_k_368.pdfSearch in Google Scholar
Enloe, C. L., Habash Krause, L., McHarg, M. G., Nava, O., Shoemaker, P. B., Ehmann, E., & Williams, J. D. (2004). Characterization of a Plasma Source for Ground-Based Simulation of LEO Plasma Conditions. American Institute of Aeronautics and Astronautics, AIAA-2004-5668. https://arc.aiaa.org/doi/pdfplus/10.2514/1.A34879Search in Google Scholar
Rubin, B., Farnell, C., Williams, J., Vaughn, J., Schneider, T., & Ferguson, D. (2009). Magnetic Filter Type Plasma Source for Ground-Based Simulation of Low Earth Orbit Environment. Plasma Sources Science and Technology, 18 (2), 025015. https://doi.org/10.1088/0963-0252/18/2/025015Search in Google Scholar
Li, M., Liu, Y., & Lei, J. (2023). Design and Fabrication of a Magnetic Filter Source to Produce Ionospheric-Like Plasma. AIP Advances, 13 (4), 045208. https://doi.org/10.1063/5.0126931Search in Google Scholar
Charles, C. (2009). Plasmas for Spacecraft Propulsion. Journal of Physics D: Applied Physics, 42 (16), 163001. https://doi.org/10.1088/0022-3727/42/16/163001Search in Google Scholar
Lai, S. T., & Miller, C. (2020). Retarding Potential Analyzer: Principles, Designs, and Space Applications. AIP Advances, 10 (9), 095324. https://doi.org/10.1063/5.0014266Search in Google Scholar
Allen, J. E. (2009). Probe Measurements in Laboratory Plasmas. Plasma Sources Science and Technology, 18 (1), 014004. https://doi.org/10.1088/0963-0252/18/1/014004Search in Google Scholar
Cho, M., Ramasamy, R., Hikita, M., Tanaka, K., & Sasaki, S. (2002). Journal of Spacecraft and Rockets, 39 (3), 392–399. https://doi.org/10.2514/2.3838Search in Google Scholar
Chen, F. F. (2006). Introduction to Plasma Physics and Controlled Fusion (2nd ed.). Springer.Search in Google Scholar
Goebel, D. M., & Katz, I. (2008). Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Wiley.Search in Google Scholar
Yildiz, M. S., & Celik, M. (2019). Plume Diagnostics of BUSTLab Microwave Electrothermal Thruster Using Langmuir and Faraday Probes. Plasma Science and Technology, 21 (4), 045505. https://doi.org/10.1088/2058-6272/aaf280Search in Google Scholar
Aanesland, A., Meige, A., & Chabert, P. (2009). Electric Propulsion Using Ion-Ion Plasmas. Journal of Physics: Conference Series, 162, 012009. https://doi.org/10.1088/1742-6596/162/1/012009Search in Google Scholar
Raitses, Y., Rodriguez, E., Skoutnev, V., Powis, A., Kraus, B., & Kaganovich, I. (2019). Characterization of the ExB Penning Discharge Using Electrostatic Probes. In 36thInternational Electric Propulsion Conference, IEPC-2019-433. 15–20 September, 2019, University of Vienna, Vienna, Austria. Available at: https://htx.pppl.gov/conferencepapers.htmlSearch in Google Scholar
Cortázar, O. D., Megía-Macías, A., Tarvainen, O., Kalvas, T., & Koivisto, H. (2015). The Relationship Between Visible Light Emission and Species Fraction of the Hydrogen Ion Beams Extracted from 2.45 GHz Microwave Discharge. Review of Scientific Instruments, 86 (8), 083309. https://doi.org/10.1063/1.4928475Search in Google Scholar
Griem, H. R. (1997). Principles of Plasma Spectroscopy. Cambridge University Press.Search in Google Scholar
Mazouffre, S. (2016). Laser-Induced Fluorescence Spectroscopy for Electric Propulsion. Plasma Sources Science and Technology, 25 (3), 033002. https://doi.org/10.1088/0963-0252/25/3/033002Search in Google Scholar
Lu, C., Zhang, Z., Sun, B., Zhang, X., & Li, J. (2023). Transition Characteristics in an Indium Tin Oxide Hollow Cathode. Physics of Plasmas, 32 (3), 033509. https://doi.org/10.1063/5.0135271Search in Google Scholar
Patil, S., Sharma, S., Sengupta, S., Sen, A., & Kaganovich, I. (2022). Electron Bounce-Cyclotron Resonance in Capacitive Discharges at Low Magnetic Fields. Physical Review Research, 4 (1), 013059. https://doi.org/10.1103/PhysRevResearch.4.013059Search in Google Scholar
Xie, Z.-Q. (1997). State of the art of ECR ion sources. In Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167), (pp. 2662–2666). 16 May 1997, Vancouver, BC, Canada. https://doi.org/10.1109/PAC.1997.752725Search in Google Scholar