Open Access

Redesign of the AD820 Single-Channel Circuit for the Development of the ARD820 Low-Noise Rail-to-Rail Operational Amplifier

, ,  and   
May 27, 2025

Cite
Download Cover

Horowitz, P., & Hill, W. (2015). The Art of Electronics. Cambridge University Press. Search in Google Scholar

Huijsing, J. (2017). Operational Amplifiers. Theory and Design (3rd ed.). Springer International Publishing. Search in Google Scholar

Franco, S. (2015). Design with Operational Amplifiers and Analog Integrated Circuits (4th ed.). McGraw-Hill Education,. Search in Google Scholar

Jung, W. (2005). Op Amp Applications Handbook. Elsevier. Search in Google Scholar

Yuce, E., & Minaei, S. (2024). Passive and Active Circuits by Example. Springer Nature, Switzerland. DOI:10.1007/978-3-031-44966-6 Search in Google Scholar

Manturshettar, S. V., & Sunita, M. S. (2019). A low noise low power operational transconductance amplifier for biomedical applications. In 2019 IEEE 16th India Council International Conference (INDICON), IEEE, (pp. 1–4). DOI:10.1109/INDICON47234.2019.9030285 Search in Google Scholar

Almalah, N. T., & Aldabbagh, F. H. (2022). Inductanceless High Order Low Frequency Filters for Medical Applications. International Journal of Electrical and Computer Engineering, 12, 1299–1307. DOI:10.11591/ijece.v12i2.pp1299-1307 Search in Google Scholar

Sharma, D., & Nath, V. (2024). CMOS Operational Amplifier Design for Industrial and Biopotential Applications: Comprehensive Review and Circuit Implementation. Results in Engineering, 22, 102357. DOI:10.1016/j.rineng.2024.102357 Search in Google Scholar

Hussein, Z. S., & Motlak, H. J. (2024). Design Methodology for a Low-Power Two-Stage CMOS Operational Amplifier for Optical Receiver Applications. Journal Europeen des Syst´emes Automatises, 57, 815–822. DOI:10.18280/jesa.570320 Search in Google Scholar

Malhi, S., Salama, C., & Donnison, W. (1981). A Low-Voltage Micropower JFET/Bipolar Operational Amplifier. IEEE Journal of Solid-State Circuits 16, 669–676. DOI:10.1109/JSSC.1981.1051660 Search in Google Scholar

Bowers, D., & Wurcer, S. (1999). Recent developments in bipolar operational amplifiers. In Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.99CH37024), IEEE, (pp. 38–45). DOI:10.1109/BIPOL.1999.803521 Search in Google Scholar

Huijsing, J., & Linebarger, D. (1985). Low-Voltage Operational Amplifier with Rail-to-Rail Input and Output Ranges. IEEE Journal of Solid-State Circuits, 20, 1144–1150. DOI:10.1109/JSSC.1985.1052452 Search in Google Scholar

Wang, C.-C., Tsai, T.-Y., Lu, W.-J., Chen, C.-L., & Wu, Y.-L. (2015). A 30 V Rail-to-Rail Operational Amplifier. Microelectronics Journal, 46, 911–915. DOI:10.1016/j. mejo.2015.06.015 Search in Google Scholar

Rodovalho, L. H., Rodrigues, C. R., & Aiello, O. (2023). Rail-to-Rail Input/Output Bulk Driven Class AB Operational Amplifier with Improved Composite Transistors. Analog Integrated Circuits and Signal Processing, 115, 279–291. DOI:10.1007/s10470-023-02160-0 Search in Google Scholar

Guang, Y., & Bin, Y. (2012). Design and Analysis of a High-Gain Rail-to-Rail Operational Amplifier. Procedia Engineering, 29, 3039–3043. DOI:10.1016/j.proeng.2012. 01.436. Search in Google Scholar

Zhang, J., Zhang, C., Feng, Y., Zhang, Q., & Li, T. (2024). A 65 nm CMOS Rail-to-Rail Auto-Zero Operational Amplifier Based on Charge Pump Internal Power Supply. Microelectronics Journal, 145, 106098. DOI:10.1016/j.mejo.2024.106098 Search in Google Scholar

Menberu, T. (2023). Analysis and Comparison of Two Stage and Single Stage Operational Amplifiers Using 0.18 µm Technology. American Journal of Physics and Applications, 10, 72. DOI:10.11648/j.ajpa.20221006.11 Search in Google Scholar

Agostinho, P. R., Goncalez, O. L., & Wirth, G. (2016). Rail to Rail Radiation Hardened Operational Amplifier in Standard CMOS Technology with Standard Layout Techniques. Microelectronics Reliability, 67, 99–103. DOI:10.1016/j. microrel.2016.11.001 Search in Google Scholar

Kostrichkin, D., Rudenko, S., Lapkis, M, & Atvars, A. (2022). Development of Electric Scheme for 4-Channel Low Noise Rail-to-Rail Operational Amplifier aRD824 Based on AD824 Prototype. Engineering for Rural Development, 21, 962–968. DOI:10.22616/ERDev.2022.21.TF317 Search in Google Scholar

Kostrichkin, D., Rudenko, S., Lapkis, M., & Atvars, A. (2022). Simulation and Test Results of 4-Channel Low Noise Rail-to-Rail Operational Amplifier aRD824 Based on AD824 Prototype. Engineering for Rural Development, 21, 969–977. DOI:10.22616/ERDev.2022.21.TF318 Search in Google Scholar

Analog devices, Inc. (2011). Data Sheet. AD820: Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp Data Sheet. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD820.pdf Search in Google Scholar

Qian, M., & Wang, D. (2005). A Precision Physical Model for Three Terminal Diffused or Ion-Implanted Resistors. Solid-State Electronics, 49, 323–327. DOI:10.1016/j. sse.2004.11.002 Search in Google Scholar

Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics