Yuce, E., & Minaei, S. (2024). Passive and Active Circuits by Example. Springer Nature, Switzerland. DOI:10.1007/978-3-031-44966-6Search in Google Scholar
Manturshettar, S. V., & Sunita, M. S. (2019). A low noise low power operational transconductance amplifier for biomedical applications. In 2019 IEEE 16th India Council International Conference (INDICON), IEEE, (pp. 1–4). DOI:10.1109/INDICON47234.2019.9030285Search in Google Scholar
Almalah, N. T., & Aldabbagh, F. H. (2022). Inductanceless High Order Low Frequency Filters for Medical Applications. International Journal of Electrical and Computer Engineering, 12, 1299–1307. DOI:10.11591/ijece.v12i2.pp1299-1307Search in Google Scholar
Sharma, D., & Nath, V. (2024). CMOS Operational Amplifier Design for Industrial and Biopotential Applications: Comprehensive Review and Circuit Implementation. Results in Engineering, 22, 102357. DOI:10.1016/j.rineng.2024.102357Search in Google Scholar
Hussein, Z. S., & Motlak, H. J. (2024). Design Methodology for a Low-Power Two-Stage CMOS Operational Amplifier for Optical Receiver Applications. Journal Europeen des Syst´emes Automatis‘es, 57, 815–822. DOI:10.18280/jesa.570320Search in Google Scholar
Malhi, S., Salama, C., & Donnison, W. (1981). A Low-Voltage Micropower JFET/Bipolar Operational Amplifier. IEEE Journal of Solid-State Circuits 16, 669–676. DOI:10.1109/JSSC.1981.1051660Search in Google Scholar
Bowers, D., & Wurcer, S. (1999). Recent developments in bipolar operational amplifiers. In Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.99CH37024), IEEE, (pp. 38–45). DOI:10.1109/BIPOL.1999.803521Search in Google Scholar
Huijsing, J., & Linebarger, D. (1985). Low-Voltage Operational Amplifier with Rail-to-Rail Input and Output Ranges. IEEE Journal of Solid-State Circuits, 20, 1144–1150. DOI:10.1109/JSSC.1985.1052452Search in Google Scholar
Wang, C.-C., Tsai, T.-Y., Lu, W.-J., Chen, C.-L., & Wu, Y.-L. (2015). A 30 V Rail-to-Rail Operational Amplifier. Microelectronics Journal, 46, 911–915. DOI:10.1016/j. mejo.2015.06.015Search in Google Scholar
Rodovalho, L. H., Rodrigues, C. R., & Aiello, O. (2023). Rail-to-Rail Input/Output Bulk Driven Class AB Operational Amplifier with Improved Composite Transistors. Analog Integrated Circuits and Signal Processing, 115, 279–291. DOI:10.1007/s10470-023-02160-0Search in Google Scholar
Guang, Y., & Bin, Y. (2012). Design and Analysis of a High-Gain Rail-to-Rail Operational Amplifier. Procedia Engineering, 29, 3039–3043. DOI:10.1016/j.proeng.2012. 01.436.Search in Google Scholar
Zhang, J., Zhang, C., Feng, Y., Zhang, Q., & Li, T. (2024). A 65 nm CMOS Rail-to-Rail Auto-Zero Operational Amplifier Based on Charge Pump Internal Power Supply. Microelectronics Journal, 145, 106098. DOI:10.1016/j.mejo.2024.106098Search in Google Scholar
Menberu, T. (2023). Analysis and Comparison of Two Stage and Single Stage Operational Amplifiers Using 0.18 µm Technology. American Journal of Physics and Applications, 10, 72. DOI:10.11648/j.ajpa.20221006.11Search in Google Scholar
Agostinho, P. R., Goncalez, O. L., & Wirth, G. (2016). Rail to Rail Radiation Hardened Operational Amplifier in Standard CMOS Technology with Standard Layout Techniques. Microelectronics Reliability, 67, 99–103. DOI:10.1016/j. microrel.2016.11.001Search in Google Scholar
Kostrichkin, D., Rudenko, S., Lapkis, M, & Atvars, A. (2022). Development of Electric Scheme for 4-Channel Low Noise Rail-to-Rail Operational Amplifier aRD824 Based on AD824 Prototype. Engineering for Rural Development, 21, 962–968. DOI:10.22616/ERDev.2022.21.TF317Search in Google Scholar
Kostrichkin, D., Rudenko, S., Lapkis, M., & Atvars, A. (2022). Simulation and Test Results of 4-Channel Low Noise Rail-to-Rail Operational Amplifier aRD824 Based on AD824 Prototype. Engineering for Rural Development, 21, 969–977. DOI:10.22616/ERDev.2022.21.TF318Search in Google Scholar
Analog devices, Inc. (2011). Data Sheet. AD820: Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp Data Sheet. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD820.pdfSearch in Google Scholar
Qian, M., & Wang, D. (2005). A Precision Physical Model for Three Terminal Diffused or Ion-Implanted Resistors. Solid-State Electronics, 49, 323–327. DOI:10.1016/j. sse.2004.11.002Search in Google Scholar