Open Access

Evaluation of Received Signal Power Level and Throughput Depending on Distance to Transmitter in Testbed for Automotive WLAN IEEE 802.11ac Communication Network

, , , ,  and   
Feb 02, 2022

Cite
Download Cover

1. Higginbottom, G.N. (1998). Performance Evaluation of Communication Networks. Artech House. Search in Google Scholar

2. Saunders, S.R., & Aragon-Zavala, A. (2007). Antennas and Propagation for Wireless Communication Systems. John Wiley & Sons Ltd. Search in Google Scholar

3. Ancans, A., & Petersons, E. (2018). The Relationship between Transport Wireless Network Throughput and Vehicle Speed. Automatic Control and Computer Sciences (AC&CS), 52 (4), 297–305.10.3103/S0146411618040028 Search in Google Scholar

4. Jerjomins, R., Ancans, A., Petersons, E., & Gerina-Ancane, A. (2020). Improving handover mechanism in vehicular WiFi networks. In: ICTE in Transportation and Logistics 2019, Lecture Notes in Intelligent Transportation and Infrastructure (ICTE ToL 2019, LNITI), (pp. 243–261). Ginters E., Ruiz Estrada M., Piera Eroles M., eds. Switzerland, Cham: Springer.10.1007/978-3-030-39688-6_32 Search in Google Scholar

5. Sharp, I., & Yu, K. (ed). (2019). Wireless Positioning: Principles and Practice. Springer Nature Singapore.10.1007/978-981-10-8791-2 Search in Google Scholar

6. Mazuelas, S., ABahillo, A., Lorenzo, R.M., Fernandez, P., Lago, F.A., Garcia, E., … & Abril, E.J. (2009). Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks. IEEE Journal on Selected Topics in Signal Processing, 3 (5), 821–831.10.1109/JSTSP.2009.2029191 Search in Google Scholar

7. Lim, C.B., Kang, S.H., Cho, H.H., Park, S.W., & Park, J.G. (2010). An Enhanced Indoor Localization Algorithm Based on IEEE 802.11 WLAN Using RSSI and Multiple Parameters. In: 5th International Conference on Systems and Networks Communications (pp. 238–242), 22 – 27 August 2020, Nice, France.10.1109/ICSNC.2010.44 Search in Google Scholar

8. Yamamoto, B., Wong, A., Agcanas, P.J., Jones, K., Gaspar, D., Andrade, R., & Trimble, A.Z. (2019). Received Signal Strength Indication (RSSI) of 2.4 GHz and 5 GHz Wireless Local Area Network Systems Projected over Land and Sea for Near-Shore Maritime Robot Operations. Journal of Marine Science and Engineering, 7 (9), 290–306.10.3390/jmse7090290 Search in Google Scholar

9. Mouton, M., Castignani, G., Frank, R., & Engel, T. (2015). Enabling Vehicular Mobility in CityWide IEEE 802.11 Networks through Predictive Handovers. Vehicular Communications, 2 (2), 59–69.10.1016/j.vehcom.2015.02.001 Search in Google Scholar

10. Brodsky, M.Z., & Morris, R.T. (2009). In Defense of Wireless Carrier Sense. Conference on Data Communication, ACM SIGCOMM 2009, 39 (4), 147–158.10.1145/1592568.1592587 Search in Google Scholar

11. Hadaller, D., Keshav, S., Brecht, T., & Agarwal, S. (2007). Vehicular opportunistic communication under the microscope. In: MobiSys ‘07 Proceedings of the 5th International Conference on Mobile Systems, Applications and Services (pp. 206–219), 11 – 13 June 2007, San Juan, Puerto Rico.10.1145/1247660.1247685 Search in Google Scholar

12. Beard, C., & Stallings, W. (2016). Wireless Communication Networks and Systems. Pearson Higher Education, Inc. Search in Google Scholar

13. Svecko, J., Malajner, M., & Gleich, D. (2015). Distance Estimation Using RSSI and Particle Filter. ISA Transactions, 55, 275–285.10.1016/j.isatra.2014.10.00325457044 Search in Google Scholar

14. Sauter, M. (2017). From GSM to LTE – Advanced Pro and 5G. An Introduction to Mobile Networks and Mobile Broadband (3rd ed.). John Wiley & Sons Ltd.10.1002/9781119346913 Search in Google Scholar

15. Fei, H. (ed.). (2018). VehicletoVehicle and VehicletoInfrastructure Communications: A Technical Approach. CRC Press, Taylor & Francis Group. Search in Google Scholar

16. Emmelmann, M., Bochow, B., & Kellum, C.C. (ed.). (2010). Vehicular Networking: Automotive Applications and Beyond. John Wiley & Sons Ltd.10.1002/9780470661314 Search in Google Scholar

17. Ancans, G., Stafecka, A., Bobrovs, V., Ancans, A., & Caiko, J. (2017). Analysis of Characteristics and Requirements for 5G Mobile Communication Systems. Latvian Journal of Physics and Technical Sciences, 54 (4), 69–78.10.1515/lpts-2017-0028 Search in Google Scholar

18. Balodis, G. (2011). Diskrētā signālu apstrāde. RTU Izdevniecība. Search in Google Scholar

19. Beķeris, E. (2010). Signālu teorijas pamati. RTU Izdevniecība. Search in Google Scholar

20. Haykin, S. (2014). Digital Communication Systems. John Wiley & Sons, Inc. Search in Google Scholar

Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics