Open Access

Analysis of the Role of the Latvian Natural Gas Network for the use of Future Energy Systems: Hydrogen from Res


Cite

1. European Commission. (2020). Powering a Climate-Neutral Economy: An EU Strategy for Energy System Integration. Brussels, 8.7.2020, COM (2020) 299 final. Available at https://ec.europa.eu/energy/sites/ener/files/energy_system_integration_strategy_.pdf Search in Google Scholar

2. European Commission. (2019). Hydrogen. Available at https://ec.europa.eu/energy/topics/energy-system-integration/hydrogen_en Search in Google Scholar

3. BloombergNEF. (2020). Hydrogen Economy Outlook. Available at https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf Search in Google Scholar

4. European Hydrogen Backbone. (2020). European Hydrogen Backbone – Gas for Climate 2050. Available at https://gasforclimate2050.eu/sdm_downloads/european-hydrogen-backbone/ Search in Google Scholar

5. GRTgaz. (2019). Technical and Economic Conditions for Injecting Hydrogen into Natural Gas Networks. Final report, France. Available at https://www.grtgaz.com/fileadmin/plaquettes/en/2019/Technical-economic-conditions-for-injecting-hydrogen-into-natural-gas-networks-report2019.pdf Search in Google Scholar

6. Pellegrini, M., Guzzini, A., & Saccani, C. (2020). A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network. Energies, 13, 5570. doi:10.3390/en1321557010.3390/en13215570 Search in Google Scholar

7. HyDeploy. (2020). Is a Pioneering Hydrogen Energy Project Designed to Help Reduce UK CO2 Emissions. Available at https://hydeploy.co.uk/ Search in Google Scholar

8. Ministry for Environmental Protection and Regional Development. (2019). Latvia’s Strategy for Climate Neutrality by 2050. Available at https://unfccc.int/sites/default/files/resource/LTS1_Latvia.pdf Search in Google Scholar

9. Conexus Baltic Grid. (2020). Is a Unified Natural Gas Transmission and Storage Operator in Latvia. Available at https://www.conexus.lv/en Search in Google Scholar

10. Zemite, L., Kutjuns, A., Bode, I., Kunickis, M., & Zeltins, N. (2018). Risk Treatment and System Recovery Analysis of Gas System of Gas and Electricity Network of Latvia. Latvian Journal of Physics and Technical Sciences, 55 (5), 3–14. doi: 10.2478/lpts-2018-003110.2478/lpts-2018-0031 Search in Google Scholar

11. Zemite, L., Bode, I., Zeltins, N., Kutjuns, A., & Zbanovs, A. (2018). Analysis of the power system damage hazard from the point of view of the gas supply system. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018, (art. no. 8494380), 12–15 June 2018, Palermo, Italy. doi: 10.1109/EEEIC.2018.849438010.1109/EEEIC.2018.8494380 Search in Google Scholar

12. Koposovs, A., Bode, I., Zemite, L., Selickis, A., & Jasevics, (2019). A. Optimization of the Selection Method for Reconstruction of Outworn Gas Distribution Pipeline. Latvian Journal of Physics and Technical Sciences, 56 (5), 33–44, doi: 10.2478/lpts-2019-002910.2478/lpts-2019-0029 Search in Google Scholar

13. Storeenergy. (n.d.). Energy Storage Report. Available at https://www.storengy.com/en/our-jobs/renewable-gases/our-latest-projects Search in Google Scholar

14. Savickis, J., Zemite, L., Zeltins, N., Selickis, A., & Ansone, A. (2020). The Biomethane Injection into the Natural Gas Networks: The EU’s Gas Synergy Path. Latvian Journal of Physics and Technical Sciences, 57 (4), 34–50. doi: 10.2478/lpts-2020-002010.2478/lpts-2020-0020 Search in Google Scholar

15. AST. (2020). Latvian Electricity Market Overview. Available at https://www.ast.lv/en/electricity-market-review?year=2018&month=13 Search in Google Scholar

16. Telicko, J., Heincis, D., & Jakovics, A. (2020). A Study of Solar Panel Efficiency in Latvian Climate Conditions. E3S Web of Conferences, 172, 1–4. https://doi.org/10.1051/e3sconf/20201721600710.1051/e3sconf/202017216007 Search in Google Scholar

17. Lauka, D., Pakere, I., & Blumberga, D. (2018). First Solar Power Plant in Latvia. Analysis of Operational Data. Energy Procedia, 147, 162–165. https://doi.org/10.1016/j.egypro.2018.07.04910.1016/j.egypro.2018.07.049 Search in Google Scholar

18. Soloha, R., Pakere, I., & Blumberga, D. (2017). Solar Energy Use in District Heating Systems. A Case Study in Latvia. Energy, 137, 586–594. https://doi.org/10.1016/j.energy.2017.04.15110.1016/j.energy.2017.04.151 Search in Google Scholar

19. CSP. (2018). Latvijas energobilance 2017. gadā. Availabe at https://www.csb.gov.lv/lv/statistika/statistikas-temas/videenergetika/energetika/meklet-tema/332-energobilance-2017-gada Search in Google Scholar

20. Aniskevich, S., Bezrukovs, V., Zandovskis, U., & Bezrukovs, D. (2017). Modelling the Spatial Distribution of Wind Energy Resources in Latvia. Latvian Journal of Physics and Technical Sciences, 54 (6), 10–20. https://doi.org/10.1515/lpts-2017-003710.1515/lpts-2017-0037 Search in Google Scholar

21. Cabinet of Ministers. (2017). Regulation No. 78. Regulations Regarding the Trade and Use of Natural Gas. Latvijas Vēstnesis. Available at https://likumi.lv/ta/id/289031 Search in Google Scholar

22. Ministru kabinets. (2016). Ministru kabineta 2016. gada 4. oktobra noteikumi Nr. 650 Prasības biometāna un gāzveida stāvoklī pārvērstas sašķidrinātās dabasgāzes ievadīšanai un transportēšanai dabasgāzes pārvades un sadales sistēmā. Latvijas Vēstnesis. Available at https://likumi.lv/ta/id/285189 Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics