Open Access

Optimisation of surface characteristics of standard duplex stainless for bio-applications by using electrophoretic deposition: A brief review


Cite

1. B. Basu, D. Katti and A. Kumar, Advanced Biomaterials Fundamentals, Processing, and Applications, John Wiley & Sons, Inc., 2009. https://doi.org/10.1002/9780470891315 Search in Google Scholar

2. C. M. Agrawal, J. L. Ong, M. R. Appleford and G. Mani, Introduction to biomaterials basic theory with engineering applications, Cambridge University Press, First edition, 2014. Search in Google Scholar

3. N. B. Shiny and S. Gnanavel, Surface Modification of 316L stainless steel with hydroxyapatite for dental implants, Int. J. Control Theory Appl. 2016, 9, 213–220. Search in Google Scholar

4. Y. Y. Shi, M. Li, Q. Liu, Z. J. Jia, X. C. Xu, Y. Cheng and Y. F. Zheng, Electrophoretic deposition of graphene oxide reinforced chitosan–hydroxyapatite nanocomposite coatings on Ti substrate, J. Mater. Sci.: Mater. Med., 2016, 27, 1–13. https://doi.org/10.1007/s10856-015-5634-9 Search in Google Scholar

5. A. R. Boccaccini, S. Keim, R. Ma, Y. Li and I. Zhitomirsky, Electrophoretic deposition of biomaterials, J. R. Soc. Interface, 2010, 7, S581–S613. https://doi.org/10.1098/rsif.2010.0156.focus Search in Google Scholar

6. L. Oakes, Controlling Nanomaterial Assembly to Improve Material Performance in Energy Storage Electrodes, Ph.D. Thesis, Vanderbilt University, United State, 2016. Search in Google Scholar

7. A. A. White and S. M. Best, Hydroxyapatite–carbon nano-tube composites for biomedical applications: a review, Int. J. Appl. Ceram. Technol., 2007, 4, 1–13. https://doi.org/10.1111/j.1744-7402.2007.02113.x Search in Google Scholar

8. F. Alexander, Electrophoretic deposition of organic/inorganic composite coatings on metallic substrates for bone replacement applications: Mechanisms and development of new bioactive materials based on polysaccharides, Ph.D. thesis, University of Erlangen, Germany, 2015. Search in Google Scholar

9. A. S. Hammood, M. A. S. Mahdi, L. Thair and H. Haddad, Evaluating the effect of hydroxyapatite-chitosan coating on the corrosion behavior of 2205 duplex stainless steel for biomedical applications, Mater. Res. Express., 2019, 6, 1–30. https://doi.org/10.1088/2053-1591/ab2493 Search in Google Scholar

10. N. Thi Thom, P. Thi Nam, N. Thu Phuong, C. Thi Hong, N. Van Trang, N. Thi Xuyen and D. Thi Mai Thanh, Electrodeposition of hydroxyapatite/functionalized carbon nanotubes (HAp/fCNTs) coatings on the surface of 316L stainless steel, Vietnam. J. Sci. Technol., 2017, 55, 706–715. https://doi.org/10.15625/2525-2518/55/6/9153 Search in Google Scholar

11. S. H. Kasim and A. H. Hashim, Electrophoretic deposition of multi-walled carbon nanotubes on stainless steel (SS) foils, J. Ind. Technol., 2010, 19, 139–148. Search in Google Scholar

12. A. Francis, K. Krishnakumar, and Dineshkumar, Carbon nanotube: its functionalization and applications in targeted drug delivery system, Int. J. Pharm. Technol., 2020, 12, 7004–7022. https://doi.org/10.32318/IJPT/0975-766X/12(1).7004-7022 Search in Google Scholar

13. L. Tang, Q. Xiao, Y. Mei, S. He, Z. Zhang, R. Wang and W. Wang, Insights on functionalized carbon nanotubes for cancer theranostics, J. Nanobiotechnol., 2021, 19, 1–28. https://doi.org/10.1186/s12951-021-01174-y Search in Google Scholar

14. X. Dong, L. Liu, D. Zhu, H. Zhang, Y. Li, and X. Leng, Effects of carboxylated multiwalled carbon nanotubes on the function of macrophages, J. Nanomater., 2015. https://dx.doi.org/10.1155/2015/638760 Search in Google Scholar

15. C. Zhu, W. Wang, J. Zeng, C. Lu, L. Zhou and J. Chang, Interactive relationship between the superheat, interfacial heat transfer, deposited film and microstructure in strip casting of duplex stainless steel, ISIJ Int., 2019, 59, 880–888. https://doi.org/10.2355/isijinternational.ISIJINT-2018-747 Search in Google Scholar

16. I. Alvarez-Armas, Duplex stainless steels: brief history and some recent alloys, Recent Pat. Mech. Eng., 2008, 1, 51-57. https://www.ingentaconnect.com/contentone/ben/meng/2008/00000001/00000001/art00006?crawler=true Search in Google Scholar

17. D. E. J. Talbot and J. D. R. Talbot, Corrosion science and technology, CRC Press, Third Edition, 2018. Search in Google Scholar

18. T. Matsushita, Orthopaedic applications of metallic biomaterials, In: Niinomi, M (ed.) Metals for Biomedical Devices, Woodhead Publishing Series in Biomaterials, UK, 2010, 329–354. https://doi.org/10.1533/9781845699246.4.329 Search in Google Scholar

19. A. Mahajan and S. S. Sidhu, Surface modification of metallic biomaterials for enhanced functionality: A review, Mater. Technol., 2017, 33, 93-105. https://doi.org/10.1080/10667857.2017.1377971 Search in Google Scholar

20. O. O. Abegunde, E. T. Akinlabi, O. P. Oladijo, S. Akin-labi and A. U. Ude, Overview of thin film deposition techniques, AIMS. Mater. Sci., 2019, 6, 174–199. https://doi.org/10.3934/matersci.2019.2.174 Search in Google Scholar

21. M. Idrees and A. Z. Jebakumar, A review on corrosion scenario of bio implants in human body, Am. J. Biol. Pharm. Res., 2014, 1, 100–104. Search in Google Scholar

22. K. Holmberg and A. Matthews, Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering, Second Edition, Elsevier, 2009. Search in Google Scholar

23. J. R. Davis, Surface Engineering for Corrosion and Wear Resistance, ASM International, 2001. ISBN: 978-0-87170-700-0 Search in Google Scholar

24. A. S. Hammood, M. S. Naser and Z. S. Radeef, Electrophoretic Deposition of Nanocomposite Hydroxyapatite/Titania Coating on 2205 Duplex Stainless Steel Substrate, The Journal of the Minerals, JOM., 2021, 73, 524–533. https://doi.org/10.1007/s11837-020-04437-5 Search in Google Scholar

25. C. Wen, Surface coating and modification of metallic biomaterials, Woodhead Publishing, Elsevier Ltd., 2015. ISBN 978-1-78242-303-4 https://doi.org/10.1016/C2014-0-02668-8 Search in Google Scholar

26. K. Duan and R. Wang, Surface modifications of bone implants through wet chemistry, J. Mater. Chem., 2006, 16, 2309–2321. https://doi.org/10.1039/b517634d Search in Google Scholar

27. Y. Oshida, Hydroxyapatite synthesis and applications, Momentum Press, 2014. ISBN 9781606506745 https://doi.org/10.5643/9781606506745 Search in Google Scholar

28. I. V. Antoniac, Handbook of bioceramics and biocomposites, Springer Cham, 2016. ISBN 978-3-319-12460-5 https://doi.org/10.1007/978-3-319-12460-5 Search in Google Scholar

29. S. Rujitanapanicha, P. Kumpapanb and P. Wanjanoic, Synthesis of Hydroxyapatite from Oyster Shell via Precipitation, Energy. Procedia., 2014, 56, 112–117. https://doi.org/10.1016/j.egypro.2014.07.138 Search in Google Scholar

30. M. Javidi, S. Javadpour, M. E. Bahrololoom and J. Ma, Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel, Mater. Sci. Eng. C., 2008, 28, 1509-1515. https://doi.org/10.1016/j.msec.2008.04.003 Search in Google Scholar

31. A. J. Nathanael, D. Mangalaraj and N. Ponpandian, Controlled growth and investigations on the morphology and mechanical properties of hydroxyapatite/titania nanocomposite thin films, Compos. Sci. Technol., 2010, 70, 1645–1651. https://doi.org/10.1016/j.compscitech.2010.06. 010 Search in Google Scholar

32. S. Morais, Multi-Walled Carbon Nanotubes, MDPI, 2019. https://doi.org/10.3390/books978-3-03921-230-9 Search in Google Scholar

33. T. T. Nguyen, N. T. Pham, T. T. M. Dinh, T. T. Vu, H. S. Nguyen and L. D. Tran, Electrodeposition of Hydroxyapatite-Multiwalled Carbon Nanotube Nanocomposite on Ti6Al4V, Adv. Polym. Technol., 2020, ID 8639687, 1-10. https://doi.org/10.1155/2020/8639687 Search in Google Scholar

34. H. Maleki-Ghaleh and J. Khalil-Allafi, Effect of hydroxyapatite-titanium-MWCNTs composite coating fabricated by electrophoretic deposition on corrosion and cellular behavior of NiTi alloy, Mater. Corros., 2019, 70, 2128–2138. https://doi.org/10.1002/maco.201910940 Search in Google Scholar

35. Y. Bai, M. P. Neupane, S. Park, M. H. Lee, T. S. Bae, F. Watari and M. Uo, Electrophoretic deposition of carbon nanotubes–hydroxyapatite nanocomposites on titanium substrate, Mater. Sci. Eng. C., 2010, 30, 1043–1049. https://doi.org/10.1016/j.msec.2010.05.007 Search in Google Scholar

36. S. Heise, C. Forster, S. Heer, H. Qi, J. Zhou, S. Virtanen, T. Lu and A. R. Boccaccini, Electrophoretic deposition of gelatine nanoparticle/chitosan coatings, Electrochim. Acta., 2019, 307, 318-325. https://doi.org/10.1016/j.electacta.2019.03.145 Search in Google Scholar

37. J. H. Dickerson and A. R. Boccaccini, Electrophoretic deposition of nanomaterials, Springer, 2012. https://doi.org/10.1007/978-1-4419-9730-2 Search in Google Scholar

38. M. Aliofkhazraei and A. S. H. Makhlouf, Handbook of nanoelectrochemistry: Electrochemical synthesis methods, properties, and characterization techniques, Springer 2016. https://doi.org/10.1007/978-3-319-15266-0 Search in Google Scholar

39. S. K. Loghmani, M. Farrokhi-Rad and T. Shahrabi, Effect of polyethylene glycol on the electrophoretic deposition of hydroxyapatite nanoparticles in isopropanol, Ceram. Int., 2013, 39, 7043-7051. http://dx.doi.org/10.1016/j.ceramint.2013.02.043 Search in Google Scholar

40. M. Farrokhi-Rad, Effect of dispersants on the electro-phoretic deposition of hydroxyapatite-carbon nanotubes nanocomposite coatings, J. Am. Ceram. Soc., 2016, 99, 2947–2955. https://doi.org/10.1111/jace.14338 Search in Google Scholar

41. L. Besra and M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater Sci., 2007, 52, 1–61. http://doi.org/10.1016/j.pmatsci.2006.07.001 Search in Google Scholar

42. J. M. Geeson, Electrophoretic deposition of graphene enhanced aluminum and bismuth trioxide nanothermite thin films, MSc. thesis, University of Missouri, USA, 2016. Search in Google Scholar

43. A. Abdeltawab, M. Shoeib, S. Mohamed, Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions, Surf. Coat. Technol., 2011, 206, 43–48. http://dx.doi.org/10.1016/j.pmatsci.2016.03.002 Search in Google Scholar

44. I. Zhitomirsky, Electrophoretic and electrolytic deposition of ceramic coatings on carbon fibers, J. Eur. Ceram. Soc., 1998, 18, 849–856. https://doi.org/10.1016/s0955-2219(97)00213-6 Search in Google Scholar

45. M. Diba, D. W. H. Fam, A. R. Boccaccini and M. S. P. Shaffer, Electrophoretic deposition of graphene-related materials: A review of the fundamentals, Prog. Mater Sci., 2016, 82, 83–117. http://dx.doi.org/10.1016/j.pmatsci.2016.03.002 Search in Google Scholar

eISSN:
1804-1213
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass