Open Access

Influence of conversion coatings on the resistance of adhesive joints to undercorrosion


Cite

1. Bajat J.B. et al.: Adhesion characteristics and corrosion stability of epoxy coatings electrodeposited on phosphated hot-dip galvanized steel, Progress in Organic Coatings 2008, 63(2), 201-208. DOI: 10.1016/j.porgcoat.2008.06.00210.1016/j.porgcoat.2008.06.002 Search in Google Scholar

2. Pokorný P.: Efficiency of conversion coatings against activation of galvanized steel in model concrete pore solutions, Koroze a ochrana materiálu 2013, 57 (4), 115-126. DOI: 10.2478/kom-2013-0014 Search in Google Scholar

3. Svoboda J., Kudláček J.: Suitable pre-treatment of hot-dip zinc to increase the adhesion of organic coatings, Manufacturing Technology 2018, 18(1), 135-139. DOI: 10.21062/ujep/66.2018/a/1213-2489/MT/18/1/13510.21062/ujep/66.2018/a/1213-2489/MT/18/1/135 Search in Google Scholar

4. Svoboda J., Kudláček J., Kreibich V., Legutko S.: Corrosion Resistance of Alternative Chemical Pre-treatments of Hot-Dip Galvanized Zinc Surface in Gapinski B., Szostak M., Ivanov V. (Eds.), Advances in Manufacturing II, volume 4 – LNME, Springer Nature Switzerland AG 2019, 572-581. DOI: 10.1007/978-3-030-16943-5_4910.1007/978-3-030-16943-5_49 Search in Google Scholar

5. Svoboda J., Kudláček J., Kreibich V.: Bezchromátové pasivace povrchu žárově pozinkovaných součástí, Transfer – Výzkum a vývoj pro letecký průmysl 2019, 33, 20-24. Search in Google Scholar

6. Zhu W. et al.: Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties, Applied Surface Science 2017, 405,157-168. DOI: 10.1016/j.apsusc. 2017.02.04610.1016/j.apsusc.2017.02.046 Search in Google Scholar

7. Winkler R., Pellet-Rostaing S., Arrachart G.: Efficient and multi-function compatible click-reaction of organosilanes, Tetrahedron Letters 2020, 61, 152145. DOI: 10.1016/j. tetlet.2020.15214510.1016/j.tetlet.2020.152145 Search in Google Scholar

8. Alcantara-Garcia A., Garcia-Casas A., Jimenez-Morales A.: The effect of the organosilane content on the barrier features of sol-gel anticorrosive coatings applied on carbon steel, Progress in Organic Coatings 2020, 139, 105418. DOI: 10.1016/j.porgcoat.2019.10541810.1016/j.porgcoat.2019.105418 Search in Google Scholar

9. Chen Y.H. et al.: Mutual intercropping-inspired co-silanization to graft well-oriented organosilane as adhesion promotion nanolayer for flexible conductors, Journal of Industrial and Engineering Chemistry 2020, 83, 90–99. DOI: 10.1016/j.jiec.2019.11.01710.1016/j.jiec.2019.11.017 Search in Google Scholar

10. Liu T.J., Sil M.Ch., Chen Ch.M.: Well-organized organosilane composites for adhesion enhancement of heterojunctions, Composites Science and Technology 2020, 193, 108135. DOI: 10.1016/j.compscitech.2020.10813510.1016/j.compscitech.2020.108135 Search in Google Scholar

11. Li Ch. et al.: Superhydrophobic surface containing cerium salt and organosilane for corrosion protection of galvanized steel, Journal of Alloys and Compounds 2020, 825, 153921. DOI: 10.1016/j.jallcom.2020.15392110.1016/j.jallcom.2020.153921 Search in Google Scholar

12. Szelag P., Chocholoušek J.: Iron phosphating (in Czech: Železnaté fosfátování), MM spektrum 2008, 4. https://www.mmspektrum.com/clanek/zeleznate-fosfatovani.html (accessed 2021-11-18) Search in Google Scholar

13. Pokorný P.: Classification of phosphate coatings (in Czech: Klasifikace fosfátových povlaků), Tribotechnika 2012, 6. Search in Google Scholar

eISSN:
1804-1213
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass