1. bookVolume 65 (2021): Issue 2 (September 2021)
Journal Details
License
Format
Journal
First Published
03 Apr 2012
Publication timeframe
4 times per year
Languages
English
access type Open Access

Corrosion in underground infrastructures

Published Online: 05 Oct 2021
Page range: 65 - 69
Journal Details
License
Format
Journal
First Published
03 Apr 2012
Publication timeframe
4 times per year
Languages
English
Abstract

There is a significant loss due to corrosion of buried infrastructure. Many pipes have failed due to mistreatment happening within them all around the world. Different soil aeration leads to macro corrosion cells that cause critical levels within the path corrosion leading to a loss of structural integrity of the buried pipes underground. This review paper seeks to address and presents a predetermined model developed by using software COMSOL Multiphysics to identify and characterize the areas experiencing a high rate of corrosion beneath the surface due to differential aeration. The pipe surfaces experience electrochemical reactions and reactant transport mechanisms in the soil and the pipes. Porosity and degree of saturation make the closed-form equations used to create the mass transport properties and electrical properties that constitute three-phase medium using standard soil parameters. The current model enables the study of soil property variations and conditions from the external environment pipeline corrosion. The model results conclude and agree well with the literature and case studies done at pipeline failure sites. The model used in this review will then enable water utilities to develop forecasting tools that may be useful for assessment.

1. Norsworthy, R., Understanding corrosion in underground pipelines: basic principles. In Underground Pipeline Corrosion, Elsevier: 2014; pp 3-34. Search in Google Scholar

2. Khosravi, A.; Syri, S.; Zhao, X.; Assad, M. E. H., An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system. Geothermics 2019, 80, 138-154. Search in Google Scholar

3. Kennedy, M. W.; Akhtar, S.; Bakken, J. A.; Aune, R. E. In Analytical and experimental validation of electromagnetic simulations using COMSOL®, re inductance, induction heating and magnetic fields, COMSOL Users Conference, Stuttgart Germany, 2011; pp 1-9. Search in Google Scholar

4. Escalante, E., Concepts of underground corrosion. In Effects of Soil Characteristics on Corrosion, ASTM International: 1989. Search in Google Scholar

5. Kim, C.-H.; Weston, R. H.; Hodgson, A.; Lee, K.-H., The complementary use of IDEF and UML modelling approaches. Computers in industry 2003, 50 (1), 35-56. Search in Google Scholar

6. Zhang, X.; He, W.; Zhang, Y.; Pandey, M. D., An effective approach for probabilistic lifetime modelling based on the principle of maximum entropy with fractional moments. Applied Mathematical Modelling 2017, 51, 626-642. Search in Google Scholar

7. Petersen, R.; Melchers, R., Long-term corrosion of cast iron cement lined pipes. Corrosion and Prevention 2012, 23 (10). Search in Google Scholar

8. Selwyn, L.; McKinnon, W.; Argyropoulos, V., Models for chloride ion diffusion in archaeological iron. Studies in conservation 2001, 46 (2), 109-120. Search in Google Scholar

9. Tomashov, N. D.; Chernova, G. P., Passivation of Metals by Contact with Cathodes. In Passivity and Protection of Metals Against Corrosion, Springer: 1967; pp 151-179. Search in Google Scholar

10. Rathnayaka, S.; Shannon, B.; Zhang, C.; Kodikara, J., Introduction of the leak-before-break (LBB) concept for cast iron water pipes on the basis of laboratory experiments. Urban Water Journal 2017, 14 (8), 820-828. Search in Google Scholar

11. Andrade, C.; Sanchez, J.; Fullea, J.; Rebolledo, N.; Tavares, F., On-site corrosion rate measurements: 3D simulation and representative values. Materials and Corrosion 2012, 63 (12), 1154-1164. Search in Google Scholar

12. Kranc, S.; Sagüés, A. A., Computation of reinforcing steel corrosion distribution in concrete marine bridge substructures. Corrosion 1994, 50 (1), 50-61. Search in Google Scholar

13. Schwerdtfeger, W., Soil resistivity as related to underground corrosion and cathodic protection. Highway Research Record 1966, (110). Search in Google Scholar

14. Mughabghab, S.; Sullivan, T., Evaluation of the pitting corrosion of carbon steels and other ferrous metals in soil systems. Waste management 1989, 9 (4), 239-251. Search in Google Scholar

15. Wakelin, R. G.; Gummow, R. A., A Summary of the Findings of Recent Watermain Corrosion Studies in Ontario. In Materials Performance Maintenance, Elsevier: 1991; pp 159-175. Search in Google Scholar

16. Deo, R. N.; Birbilis, N.; Cull, J. P., Measurement of corrosion in soil using the galvanostatic pulse technique. Corrosion science 2014, 80, 339-349. Search in Google Scholar

17. Deo, R. N.; Cull, J. P., Spectral induced polarization techniques in soil corrosivity assessments. Geotechnical Testing Journal 2015, 38 (6), 965-977. Search in Google Scholar

18. Mualem, Y.; Friedman, S., Theoretical prediction of electrical conductivity in saturated and unsaturated soil. Water Resources Research 1991, 27 (10), 2771-2777. Search in Google Scholar

19. Rhoades, J.; Raats, P.; Prather, R., Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Science Society of America Journal 1976, 40 (5), 651-655. Search in Google Scholar

20. Millington, R.; Quirk, J., Permeability of porous solids. Transactions of the Faraday Society 1961, 57, 1200-1207. Search in Google Scholar

21. Aachib, M.; Mbonimpa, M.; Aubertin, M., Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water, air, and soil pollution 2004, 156 (1), 163-193. Search in Google Scholar

22. Dang, D. N.; Lanarde, L.; Jeannin, M.; Sabot, R.; Refait, P., Influence of soil moisture on the residual corrosion rates of buried carbon steel structures under cathodic protection. Electrochimica Acta 2015, 176, 1410-1419. Search in Google Scholar

23. Akkouche, R.; Rémazeilles, C.; Jeannin, M.; Barbalat, M.; Sabot, R.; Refait, P., Influence of soil moisture on the corrosion processes of carbon steel in artificial soil: Active area and differential aeration cells. Electrochimica Acta 2016, 213, 698-708. Search in Google Scholar

24. Chang, Y.-C.; Woollam, R.; Orazem, M. E., Mathematical models for under-deposit corrosion: I. Aerated Media. Journal of The Electrochemical Society 2014, 161 (6), C321. Search in Google Scholar

25. Kim, B. S.; Kang, B. G.; Choi, S. H.; Kim, T. G., Data modeling versus simulation modeling in the big data era: case study of a greenhouse control system. Simulation 2017, 93 (7), 579-594. Search in Google Scholar

26. Gardiner, C.; Melchers, R., Corrosion of mild steel by coal and iron ore. Corrosion science 2002, 44 (12), 2665-2673. Search in Google Scholar

27. Wilkinson, L., Systat. Wiley Interdisciplinary Reviews: Computational Statistics 2010, 2 (2), 256-257. Search in Google Scholar

28. Malki, B.; Baroux, B., Computer simulation of the corrosion pit growth. Corrosion Science 2005, 47 (1), 171-182. Search in Google Scholar

29. Johnson Jr, A. Lessons in metal durability from the ancient metals; 1989. Search in Google Scholar

30. Romanoff, M., Underground corrosion. US Government Printing Office: 1957; Vol. 579. Search in Google Scholar

31. Rajani, B., Investigation of grey cast iron water mains to develop a methodology for estimating service life. American Water Works Association: 2000. Search in Google Scholar

32. Doyle, G.; Seica, M. V.; Grabinsky, M. W., The role of soil in the external corrosion of cast iron water mains in Toronto, Canada. Canadian geotechnical journal 2003, 40 (2), 225-236. Search in Google Scholar

33. Kashani, M. M.; Crewe, A. J.; Alexander, N. A., Use of a 3D optical measurement technique for stochastic corrosion pattern analysis of reinforcing bars subjected to accelerated corrosion. Corrosion Science 2013, 73, 208-221. Search in Google Scholar

34. Fernandez, I.; Bairán, J. M.; Marí, A. R., 3D FEM model development from 3D optical measurement technique applied to corroded steel bars. Construction and Building Materials 2016, 124, 519-532. Search in Google Scholar

35. Deo, R.; Azoor, R.; Kodikara, J. In Proof of concept using numerical simulations for pipe corrosion inferences using ground penetrating radar, 2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), IEEE: 2017; pp 1-5. Search in Google Scholar

36. Ashley, G.; Burstein, G., Initial stages of the anodic oxidation of iron in chloride solutions. Corrosion 1991, 47 (12), 908-916. Search in Google Scholar

37. Nicol, M. J.; Zhang, S., Anodic oxidation of iron (II) and copper (I) on various sulfide minerals in chloride solutions. Hydrometallurgy 2016, 166, 167-173. Search in Google Scholar

38. Sasson, M. B.; Calmano, W.; Adin, A., Iron-oxidation processes in an electroflocculation (electrocoagulation) cell. Journal of Hazardous Materials 2009, 171 (1-3), 704-709. Search in Google Scholar

39. Laforce, B.; Fiers, G.; Vandendriessche, H.; Crombé, P.; Cnudde, V.; Vincze, L., Monte Carlo simulation aided quantitative laboratory X-ray fluorescence analysis and its application in provenancing studies for geo-archeological samples. Analytical Chemistry 2021, 93 (8), 3898-3904. Search in Google Scholar

40. Lai, C.; Xie, M.; Murthy, D., Ch. 3. bathtub-shaped failure rate life distributions. Handbook of statistics 2001, 20, 69-104. Search in Google Scholar

41. Venzlaff, H.; Enning, D.; Srinivasan, J.; Mayrhofer, K. J.; Hassel, A. W.; Widdel, F.; Stratmann, M., Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corrosion Science 2013, 66, 88-96. Search in Google Scholar

42. Aldenderfer, M. S., Computer simulation for archaeology: an introductory essay. Simulations in archaeology 1981, 67-118. Search in Google Scholar

43. Huet, B.; L’hostis, V.; Santarini, G.; Feron, D.; Idrissi, H., Steel corrosion in concrete: Determinist modeling of cathodic reaction as a function of water saturation degree. Corrosion science 2007, 49 (4), 1918-1932. Search in Google Scholar

44. Khaled, K.; Hackerman, N., Investigation of the inhibitive effect of ortho-substituted anilines on corrosion of iron in 1 M HCl solutions. Electrochimica Acta 2003, 48 (19), 2715-2723. Search in Google Scholar

45. Zerfaoui, M.; Oudda, H.; Hammouti, B.; Kertit, S.; Benkaddour, M., Inhibition of corrosion of iron in citric acid media by aminoacids. Progress in Organic Coatings 2004, 51 (2), 134-138. Search in Google Scholar

46. Dussubieux, L.; Deraisme, A.; Frot, G.; Stevenson, C.; Creech, A.; Bienvenu, Y., La–ICP–ms, SEM–eds and EPMA analysis of eastern north american copper-based artefacts: impact of corrosion and heterogeneity on the reliability of the la–icp–ms compositional results. Archaeometry 2008, 50 (4), 643-657. Search in Google Scholar

47. Dillmann, P.; Neff, D.; Féron, D., Archaeological analogues and corrosion prediction: from past to future. A review. Corrosion engineering, science and technology 2014, 49 (6), 567-576. Search in Google Scholar

48. Libourel, G.; Verney-Carron, A.; Morlok, A.; Gin, S.; Sterpenich, J.; Michelin, A.; Neff, D.; Dillmann, P., The use of natural and archeological analogues for understanding the long-term behavior of nuclear glasses. Comptes Rendus Geoscience 2011, 343 (2-3), 237-245. Search in Google Scholar

49. Azoor, R.; Deo, R. N.; Birbilis, N.; Kodikara, J., On the optimum soil moisture for underground corrosion in different soil types. Corrosion Science 2019, 159, 108116. Search in Google Scholar

50. El-Shamy, A.; Shehata, M.; Ismail, A., Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines. Applied Clay Science 2015, 114, 461-466. Search in Google Scholar

51. Rabus, B.; Wehn, H.; Nolan, M., The importance of soil moisture and soil structure for InSAR phase and backscatter, as determined by FDTD modeling. IEEE transactions on geoscience and remote sensing 2010, 48 (5), 2421-2429. Search in Google Scholar

52. Kodešová, R.; Vignozzi, N.; Rohošková, M.; Hájková, T.; Kočárek, M.; Pagliai, M.; Kozák, J.; Šimůnek, J., Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types. Journal of Contaminant Hydrology 2009, 104 (1-4), 107-125. Search in Google Scholar

53. Ferreira, C. A. M.; Ponciano, J. A.; Vaitsman, D. S.; Pérez, D. V., Evaluation of the corrosivity of the soil through its chemical composition. Science of the total environment 2007, 388 (1-3), 250-255. Search in Google Scholar

54. Rahnemaie, R., Ion adsorption modeling as a tool to characterize metal (hydr) oxide behavior in soil. Wageningen University and Research: 2005. Search in Google Scholar

55. Maocheng, Y.; Jin, X.; Libao, Y.; Tangqing, W.; Cheng, S.; Wei, K., EIS analysis on stress corrosion initiation of pipe- line steel under disbonded coating in near-neutral pH simulated soil electrolyte. Corrosion Science 2016, 110, 23-34. Search in Google Scholar

56. Neff, D.; Dillmann, P.; Bellot-Gurlet, L.; Beranger, G., Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system. Corrosion science 2005, 47 (2), 515-535. Search in Google Scholar

57. Cole, I. S.; Marney, D., The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils. Corrosion science 2012, 56, 5-16. Search in Google Scholar

58. Neira, J.; Ortiz, M.; Morales, L.; Acevedo, E., Oxygen diffusion in soils: understanding the factors and processes needed for modeling. Chilean journal of agricultural research 2015, 75, 35-44. Search in Google Scholar

59. Nakhaie, D.; Kosari, A.; Mol, J.; Asselin, E., Corrosion resistance of hot-dip galvanized steel in simulated soil solution: A factorial design and pit chemistry study. Corrosion Science 2020, 164, 108310. Search in Google Scholar

60. Schmitz, D.; Anlauf, R.; Rehrmann, P., Effect of air content on the oxygen diffusion coefficient of growing media. 2013. Search in Google Scholar

61. Papachristodoulou, C.; Ioannides, K.; Spathis, S., The effect of moisture content on radon diffusion through soil: assessment in laboratory and field experiments. Health Physics 2007, 92 (3), 257-264. Search in Google Scholar

62. Zhou, D.; Wang, Z.; Li, C., Data requisites for transformer statistical lifetime modelling – Part I: Aging-related failures. IEEE transactions on power delivery 2013, 28 (3), 1750-1757. Search in Google Scholar

63. Partridge, G. P.; Lehman, D. M.; Huebner, R. S., Modeling the reduction of vapor phase emissions from surface soils due to soil matrix effects: porosity/tortuosity concepts. Journal of the Air & Waste Management Association 1999, 49 (4), 412-423. Search in Google Scholar

64. Cook, F.; Knight, J., Oxygen transport to plant roots: Modeling for physical understanding of soil aeration. Soil Science Society of America Journal 2003, 67 (1), 20-31. Search in Google Scholar

65. Hussain, R. R.; Ishida, T., Influence of connectivity of concrete pores and associated diffusion of oxygen on corrosion of steel under high humidity. Construction and Building Materials 2010, 24 (6), 1014-1019. Search in Google Scholar

66. Jia, W.; Bao-rong, H., Characteristics of the oxygen reduction in atmospheric corrosion. Chinese Journal of Oceanology and Limnology 1997, 15 (1), 36-41. Search in Google Scholar

67. Stratmann, M., The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers – A new experimental technique. Corrosion Science 1987, 27 (8), 869-872. Search in Google Scholar

68. Gabreab, E. M.; Hinds, G.; Fearn, S.; Hodgson, D.; Millichamp, J.; Shearing, P. R.; Brett, D. J., An electrochemical treatment to improve corrosion and contact resistance of stainless steel bipolar plates used in polymer electrolyte fuel cells. Journal of Power Sources 2014, 245, 1014-1026. Search in Google Scholar

69. Abbott, A. P.; Frisch, G.; Hartley, J.; Karim, W. O.; Ryder, K. S., Anodic dissolution of metals in ionic liquids. Progress in natural science: Materials international 2015, 25 (6), 595-602. Search in Google Scholar

70. Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R., Metal-and Reagent-Free Highly Selective Anodic Cross-Coupling Reaction of Phenols. Angewandte Chemie International Edition 2014, 53 (20), 5210-5213. Search in Google Scholar

71. King, A. D.; Birbilis, N.; Scully, J. R., Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochimica Acta 2014, 121, 394-406. Search in Google Scholar

72. Barbalat, M.; Lanarde, L.; Caron, D.; Meyer, M.; Vittonato, J.; Castillon, F.; Fontaine, S.; Refait, P., Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection. Corrosion Science 2012, 55, 246-253. Search in Google Scholar

73. Kuş, E.; Mansfeld, F., An evaluation of the electrochemical frequency modulation (EFM) technique. Corrosion Science 2006, 48 (4), 965-979. Search in Google Scholar

74. Féron, D.; Macdonald, D. D., Prediction of long term corrosion behaviour in nuclear waste systems. MRS Online Proceedings Library (OPL) 2006, 932. Search in Google Scholar

75. Birbilis, N.; Buchheit, R. G., Electrochemical characteristics of intermetallic phases in aluminum alloys: an experimental survey and discussion. Journal of the Electrochemical Society 2005, 152 (4), B140. Search in Google Scholar

76. Yi, Y.; Weinberg, G.; Prenzel, M.; Greiner, M.; Heumann, S.; Becker, S.; Schlögl, R., Electrochemical corrosion of a glassy carbon electrode. Catalysis Today 2017, 295, 32-40. Search in Google Scholar

77. Vastag, G.; Szöcs, E.; Shaban, A.; Kálmán, E., New inhibitors for copper corrosion. Pure and Applied Chemistry 2001, 73 (12), 1861-1869. Search in Google Scholar

78. Natarajan, D.; Van Nguyen, T., A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors. Journal of the Electrochemical Society 2001, 148 (12), A1324. Search in Google Scholar

79. Meyers, J. P.; Darling, R. M., Model of carbon corrosion in PEM fuel cells. Journal of the Electrochemical Society 2006, 153 (8), A1432. Search in Google Scholar

80. Garcıa, I.; Drees, D.; Celis, J.-P., Corrosion-wear of passivating materials in sliding contacts based on a concept of active wear track area. Wear 2001, 249 (5-6), 452-460. Search in Google Scholar

81. Goidanich, S.; Lazzari, L.; Ormellese, M., AC corrosion – Part 1: Effects on overpotentials of anodic and cathodic processes. Corrosion Science 2010, 52 (2), 491-497. Search in Google Scholar

82. Gurvich, M.; Dibenedetto, A.; Ranade, S., A new statistical distribution for characterizing the random strength of brittle materials. Journal of Materials Science 1997, 32 (10), 2559-2564. Search in Google Scholar

83. Wang, K.; Ma, X.; Wang, Y.; He, R., Study on the time-dependent evolution of pitting corrosion in flowing environment. Journal of The Electrochemical Society 2017, 164 (7), C453. Search in Google Scholar

84. Schmidt, G.; Suermann, M.; Bensmann, B.; Hanke-Rauschenbach, R.; Neuweiler, I., Modeling overpotentials related to mass transport through porous transport layers of PEM water electrolysis cells. Journal of The Electrochemical Society 2020, 167 (11), 114511. Search in Google Scholar

85. Scheiner, S.; Hellmich, C., Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary. Corrosion science 2007, 49 (2), 319-346. Search in Google Scholar

86. Young, D. J., High temperature oxidation and corrosion of metals. Elsevier, Vol. 1, 2008. Search in Google Scholar

87. Graedel, T.; Frankenthal, R., Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere. Journal of the Electrochemical Society 1990, 137 (8), 2385. Search in Google Scholar

88. Ezuber, H. M.; Alshater, A.; Hossain, S.; El-Basir, A., Impact of soil characteristics and moisture content on the corrosion of underground steel pipelines. Arabian Journal for Science and Engineering 2021, 46 (7), 6177-6188. Search in Google Scholar

89. Petersen, R.; Melchers, R., Long-term corrosion of cast iron cement lined pipes. Corrosion and Prevention 2012, 23 (10). Search in Google Scholar

90. He, B.; Han, P.; Hou, L.; Zhang, D.; Bai, X., Understanding the effect of soil particle size on corrosion behavior of natural gas pipeline via modelling and corrosion micromorphology. Engineering Failure Analysis 2017, 80, 325-340. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo