1. bookVolume 65 (2021): Issue 2 (September 2021)
Journal Details
License
Format
Journal
First Published
03 Apr 2012
Publication timeframe
4 times per year
Languages
English
access type Open Access

Corrosion behaviour of the NiTiX (X = Si, Mg, Al) alloy prepared by self-propagating high-temperature synthesis

Published Online: 05 Oct 2021
Page range: 57 - 64
Journal Details
License
Format
Journal
First Published
03 Apr 2012
Publication timeframe
4 times per year
Languages
English
Abstract

The NiTi alloys are used in the biomaterial field, because of their shape memory, superelasticity, and good corrosion resistance. The influence of alloying elements on the corrosion behaviour of NiTi was studied in this research. Samples were made by the self-propagating high-temperature synthesis method, milled, and then sintered by the spark plasma sintering method. Si, Mg, and Al were used as alloying elements always in 5 wt.%. Studied materials were compared with reference cast NiTi. Polarization resistance was measured after 1 and 12 hours of stabilization in phosphate-buffered saline. It was found out that alloying elements do not have a clear effect on polarization resistance. Si increased Rp and on the other hand, Al decreased it. Measurement of cyclic potentiodynamic polarization in PBS was conducted, too. All studied samples showed signs of localized corrosion. Corrosion was probably initiated in pores, which are presented on the surface due to used manufacturing technology.

1. Kocich, R.; Szurman, I.; Kursa, M.: The methods of preparation of Ti–Ni–X alloys and their forming. Shape Memory Alloys-Processing, Characterization and Applications 2013, 28-35. Search in Google Scholar

2. Li, B.-Y.; Rong, L.-J.; Gjunter, V.; Li, Y.-Y.: Porous Ni-Ti shape memory alloys produced by two different methods. Zeitschrift Fur Metallkunde 2000, 91 (4), 291-295. Search in Google Scholar

3. Shiva, S.; Palani, I.; Mishra, S.; Paul, C.; Kukreja, L.: Investigations on the influence of composition in the development of Ni–Ti shape memory alloy using laser based additive manufacturing. Optics & Laser Technology 2015, 69, 44-51. Search in Google Scholar

4. Zhang, J.; Sato, M.; Ishida, A.: On the Ti2Ni precipitates and Guinier–Preston zones in Ti-rich Ti–Ni thin films. Acta materialia 2003, 51 (11), 3121-3130. Search in Google Scholar

5. Lagoudas, D. C.; Vandygriff, E. L.: Processing and characterization of NiTi porous SMA by elevated pressure sintering. Journal of intelligent material systems and structures 2002, 13 (12), 837-850. Search in Google Scholar

6. Školáková, A.; Novák, P.; Salvetr, P.; Moravec, H.; Šefl, V.; Deduytsche, D.; Detavernier, C.: Investigation of the effect of magnesium on the microstructure and mechanical properties of NiTi shape memory alloy prepared by self-propagating high-temperature synthesis. Metallurgical and Materials Transactions A 2017, 48 (7), 3559-3569. Search in Google Scholar

7. Figueira, N.; Silva, T.; Carmezim, M.; Fernandes, J.: Corrosion behaviour of NiTi alloy. Electrochimica Acta 2009, 54 (3), 921-926. Search in Google Scholar

8. Rondelli, G.: Corrosion resistance tests on NiTi shape memory alloy. Biomaterials 1996, 17 (20), 2003-2008. Search in Google Scholar

9. Zhu, L.; Trepanier, C.; Pelton, A.; Fino, J. In Oxidation of nitinol and its effect on corrosion resistance, ASM Materials & Processes for Medical Device Conference, 2004; pp 156-161. Search in Google Scholar

10. Revie, R.W.; Uhlig, H.H., Uhlig‘s corrosion handbook. 2011. Search in Google Scholar

11. Ding, R.; Shang, J.-X.; Wang, F.-H.; Chen, Y.: Electrochemical Pourbaix diagrams of NiTi alloys from first-principles calculations and experimental aqueous states. Computational Materials Science 2018, 143, 431-438. Search in Google Scholar

12. Klar, E.: ASM Handbook Volume 7: Powder Metallurgy. American Society for Metals: 1984. Search in Google Scholar

13. Li, Y.-H.; Rao, G.-B.; Rong, L.-J.; Li, Y.-Y.; Ke, W.: Effect of pores on corrosion characteristics of porous NiTi alloy in simulated body fluid. Materials Science and Engineering: A 2003, 363 (1), 356-359. Search in Google Scholar

14. Sun, X. T.; Kang, Z. X.; Zhang, X. L.; Jiang, H. J.; Guan, R. F.; Zhang, X. P.: A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution. Electrochimica Acta 2011, 56 (18), 6389-6396. Search in Google Scholar

15. Cheng, F. T.; Lo, K. H.; Man, H. C.: An electrochemical study of the crevice corrosion resistance of NiTi in Hanks’ solution. Journal of Alloys and Compounds 2007, 437 (1), 322-328. Search in Google Scholar

16. Kassab, E.; Neelakantan, L.; Frotscher, M.; Swaminathan, S.; Maaß, B.; Rohwerder, M.; Gomes, J.; Eggeler, G.: Effect of ternary element addition on the corrosion behaviour of NiTi shape memory alloys. Materials and Corrosion 2014, 65 (1), 18-22. Search in Google Scholar

17. Wang, Q. Y.; Zheng, Y. F.: The electrochemical behavior and surface analysis of Ti50Ni47.2Co2.8 alloy for orthodontic use. Dental Materials 2008, 24 (9), 1207-1211. Search in Google Scholar

18. dos Reis Barros, C. D.; Gomes, J. A. d. C. P.: Strain induced localized corrosion of NiTi, NiTiCo and NiTiCr alloys in 0.9% NaCl. Journal of the Mechanical Behavior of Biomedical Materials 2020, 112, 104015. Search in Google Scholar

19. Shabalovskaya, S. A.; Rondelli, G. C.; Undisz, A. L.; Anderegg, J. W.; Burleigh, T. D.; Rettenmayr, M. E.: The electrochemical characteristics of native Nitinol surfaces. Biomaterials 2009, 30 (22), 3662-3671. Search in Google Scholar

20. Hang, R.; Ma, S.; Ji, V.; Chu, P. K.: Corrosion behavior of NiTi alloy in fetal bovine serum. Electrochimica Acta 2010, 55 (20), 5551-5560. Search in Google Scholar

21. Kassab, E.; Gomes, J. A. d. C. P.: Corrosion induced fracture of NiTi wires in simulated oral environments. Journal of the Mechanical Behavior of Biomedical Materials 2021, 116, 104323. Search in Google Scholar

22. Ševčíková, J.; Bártková, D.; Goldbergová, M.; Kuběnová, M.; Čermák, J.; Frenzel, J.; Weiser, A.; Dlouhý, A.: On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys. Applied Surface Science 2018, 427, 434-443. Search in Google Scholar

23. Elahinia, M. H.; Hashemi, M.; Tabesh, M.; Bhaduri, S. B.: Manufacturing and processing of NiTi implants: A review. Progress in Materials Science 2012, 57 (5), 911-946. Search in Google Scholar

24. Li, B.-Y.; Rong, L.-J.; Li, Y.-Y.; Gjunter, V.: A recent development in producing porous Ni–Ti shape memory alloys. Intermetallics 2000, 8 (8), 881-884. Search in Google Scholar

25. Whitney, M.; Corbin, S.; Gorbet, R.: Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Materialia 2008, 56 (3), 559-570. Search in Google Scholar

26. Zhang, L.; Zhang, Y.; Jiang, Y.; Zhou, R., Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. Journal of Alloys and Compounds 2015, 644, 513-522. Search in Google Scholar

27. Ye, L.; Liu, Z.; Raviprasad, K.; Quan, M.; Umemoto, M.; Hu, Z.: Consolidation of MA amorphous NiTi powders by spark plasma sintering. Materials Science and Engineering: A 1998, 241 (1-2), 290-293. Search in Google Scholar

28. Chen, H.; Zheng, L.; Zhang, F.; Zhang, H.: Thermal stability and hardening behavior in superelastic Ni-rich Nitinol alloys with Al addition. Materials Science and Engineering: A 2017, 708, 514-522. Search in Google Scholar

29. Novák, P.; Salvetr, P.; Školáková, A.; Karlík, M.; Kopeček, J. In Effect of Alloying Elements on the Reactive Sintering Behaviour of NiTi Alloy, Materials Science Forum, Trans Tech Publ: 2017; pp 447-451. Search in Google Scholar

30. Clarke, B.; Carroll, W.; Rochev, Y.; Hynes, M.; Bradley, D.; Plumley, D.: Influence of nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2006, 79 (1), 61-70. Search in Google Scholar

31. Bassani, P.; Panseri, S.; Ruffini, A.; Montesi, M.; Ghetti, M.; Zanotti, C.; Tampieri, A.; Tuissi, A.: Porous NiTi shape memory alloys produced by SHS: microstructure and bio-compatibility in comparison with Ti2Ni and TiNi3. Journal of Materials Science: Materials in Medicine 2014, 25 (10), 2277-2285. Search in Google Scholar

32. Ding, R.; Shang, J.-X.; Wang, F.-H.; Chen, Y.: Electrochemical Pourbaix diagrams of Ni Ti alloys from first-principles calculations and experimental aqueous states. Computational Materials Science 2018, 143, 431-438. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo