1. Zheng, Y.F.; Gu, X.N.; Witte, F.: Biodegradable metals. Mater. Sci. Eng. R Rep.2014, 77, 1–34.10.1016/j.mser.2014.01.001Search in Google Scholar

2. Moravej, M.; Mantovani, D.: Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities. Int. J. Mol. Sci.2011, 12 (7), 4250–4270.10.3390/ijms12074250Search in Google Scholar

3. Li, H.; Zheng, Y.; Qin, L.: Progress of Biodegradable Metals. Prog. Nat. Sci. Mater.2014, 24 (5), 414–422.10.1016/j.pnsc.2014.08.014Search in Google Scholar

4. Cheng, J.; Liu, B.; Wu, Y.; Zheng, Y. Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals. J. Mater. Sci. Technol.2013, 29 (7), 619–627.10.1016/j.jmst.2013.03.019Search in Google Scholar

5. Seitz, J.-M.; Durisin, M.; Goldman, J.; Drelich, J. W.: Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Adv. Healthc. Mater.2015, 4 (13), 1915–1936.10.1002/adhm.201500189Search in Google Scholar

6. Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K. U.; Willumeit, R.; Feyerabend, F.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid St. M.2008, 12 (5-6), 63–72.10.1016/j.cossms.2009.04.001Search in Google Scholar

7. Zhang, E.; Chen, H.; Shen, F.: Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J. Mater. Sci. Mater. Med.2010, 21 (7), 2151–2163.10.1007/s10856-010-4070-0Search in Google Scholar

8. Alabbasi, A.; Liyanaarachchi, S.; Kannan, M. B.: Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy. Thin Solid Films.2012, 520 (23), 6841–6844.10.1016/j.tsf.2012.07.090Search in Google Scholar

9. Haverová, L.; Oriňaková, R.; Oriňak, A.; Gorejová, R.; Baláž, M.; Vanýsek, P.; et al.: An In Vitro Corrosion Study of Open Cell Iron Structures with PEG Coating for Bone Replacement Applications. Metals.2018, 8 (7), 499.10.3390/met8070499Search in Google Scholar

10. Yusop, A. H. M.; Daud, N. M.; Nur, H.; Kadir, M. R. A.; Hermawan, H.: Controlling the degradation kinetics of porous iron by poly (lactic-co-glycolic acid) infiltration for use as temporary medical implants. Scientific reports.2015, 5, 11194.10.1038/srep11194Search in Google Scholar

11. Briones, A. V.; Sato, T.; Bigol, U. G.: Antibacterial activity of polyethylenimine/carrageenan multilayer against pathogenic bacteria. Adv. Chem. Engineer. Sci.2014, 4 (02), 233.10.4236/aces.2014.42026Search in Google Scholar

12. Demir, A. G.; Previtali, B.; Biffi, C. A.: Fibre Laser Cutting and Chemical Etching of AZ31 for Manufacturing Biodegradable Stents. Adv. Mater. Sci. Eng.2013, 2013, 1–11.10.1155/2013/692635Search in Google Scholar

13. Lindner, M.; Hoeges, S.; Meiners, W.; Wissenbach, K.; Smeets, R.; Telle, R.; et al.: Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique. J. Biomed. Mater. Res. A.2011, 97 (4), 466–471.10.1002/jbm.a.33058Search in Google Scholar

14. Hong, D.; Chou, D. T.; Velikokhatnyi, O. I.; Roy, A.; Lee, B.; Swink, I.; et al.: Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater.2016, 45, 375–386.10.1016/j.actbio.2016.08.032Search in Google Scholar

15. Andani, M. T.; Moghaddam, N. S.; Haberland, C.; Dean, D.; Miller, M. J.; Elahinia, M.: Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater.2014, 10 (10), 4058–4070.10.1016/j.actbio.2014.06.025Search in Google Scholar

16. Aghion, E.; Perez, Y.: Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology. Mater. Charact.2014, 96, 78–83.10.1016/j.matchar.2014.07.012Search in Google Scholar

17. Oriňaková, R.; Oriňak, A.; Bučková, L. M.; Giretová, M.; Medvecký, Ľ.; Labbanczová, E.; et al.: Iron based degradable foam structures for potential orthopedic applications. Int. J. Electrochem. Sci.2013, 8, 12451–12465.10.1016/S1452-3981(23)13279-2Search in Google Scholar

18. Hrubovčáková, M.; Kupková, M.; Džupon, M.; Giretová, M.; Medvecký, Ľ.; & Džunda, R.: Biodegradable polylactic acid and polylactic acid/hydroxyapatite coated iron foams for bone replacement materials. Int. J. Electrochem. Sci.2017, 12, 11122–11136.10.20964/2017.12.53Search in Google Scholar

19. Li, Y.; Jahr, H.; Lietaert, K.; Pavanram, P.; Yilmaz, A.; Fockaert, L. I.; et al.: Additively manufactured biodegradable porous iron. Acta Biomater.2018, 77, 380–393.10.1016/j.actbio.2018.07.011Search in Google Scholar

20. Wen, Z., Zhang, L., Chen, C., Liu, Y., Wu, C., & Dai, C.: A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material. Mater. Sci. Eng. C.2013, 33 (3), 1022–1031.10.1016/j.msec.2012.10.009Search in Google Scholar

21. Gorejová, R.; Haverová, L.; Oriňaková, R.; Oriňak, A.; Oriňak, M.: Recent advancements in Fe-based biodegradable materials for bone repair. J. Mater. Sci.2019, 54 (3), 1913–1947.10.1007/s10853-018-3011-zSearch in Google Scholar

22. Peng, M.; Liu, W.; Yang, G.; Chen, Q.; Luo, S.; Zhao, G.; Yu, L.: Investigation of the degradation mechanism of cross-linked polyethyleneimine by NMR spectroscopy. Polymer Degrad. Stab.2008, 93 (2), 476–482.10.1016/j.polymdegradstab.2007.11.007Search in Google Scholar

23. Čapek, J.; Stehlíková, K.; Michalcová, A.; Msallamová, Š.; Vojtěch, D.: Microstructure, mechanical and corrosion properties of biodegradable powder metallurgical Fe-2 wt% X (X= Pd, Ag and C) alloys. Mater. Chem. Phys.2016, 181, 501–511.10.1016/j.matchemphys.2016.06.087Search in Google Scholar

Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass