1. bookVolume 38 (2022): Issue 3 (September 2022)
Journal Details
License
Format
Journal
eISSN
2001-7367
First Published
01 Oct 2013
Publication timeframe
4 times per year
Languages
English
Open Access

Hierarchical Bayesian Model with Inequality Constraints for US County Estimates

Published Online: 12 Sep 2022
Volume & Issue: Volume 38 (2022) - Issue 3 (September 2022)
Page range: 709 - 732
Received: 01 Jan 2021
Accepted: 01 Jan 2022
Journal Details
License
Format
Journal
eISSN
2001-7367
First Published
01 Oct 2013
Publication timeframe
4 times per year
Languages
English

Battese, G.E., R.M. Harter, and W.A. Fuller. 1988. “An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data.” Journal of the American Statistical Association 83(401): 28–36. DOI: https://doi.org/10.2307/2288915. Search in Google Scholar

Boryan, C., Z. Yang, R. Mueller, and M. Craig. 2011. “Monitoring US agriculture: the US Depart ment of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program.” Geocarto International 26(5): 341–358. DOI: https://doi.org/10.1080/10106049.2011.562309. Search in Google Scholar

Browne, W.J., and D. Draper. 2006. “A Comparison of Bayesian and Likelihood-Based Methods for Fitting Multilevel Models.” Bayesian Analysis 1(3): 473–514. DOI: https://doi.org/10.1214/06-BA117. Search in Google Scholar

Cruze, N.B., A.L. Erciulescu, B. Nandram, W.J. Barboza, and L.J. Young. 2019. “Producing Official County-Level Agricultural Estimates in the United States: Needs and Challenges.” Statistical Science 34(2): 301–316. DOI: https://doi.org/10.1214/18-STS687. Search in Google Scholar

Erciulescu, A.L., N.B. Cruze, and B. Nandram. 2019. “Model-Based County Level Crop Estimates Incorporating Auxiliary Sources of Information.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 182(1): 283–303. DOI: https://doi.org/10.1111/rssa.12390. Search in Google Scholar

Erciulescu, A.L., N.B. Cruze, and B. Nandram. 2020. “Statistical Challenges in Combining Survey and Auxiliary Data to Produce Official Statistics.” Journal of Official Statistics 36(1): 63–88. DOI: https://doi.org/10.2478/jos-2020-0004. Search in Google Scholar

Fay, R.E., and R.A. Herriot. 1979. “Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data.” Journal of the American Statistical Association 74(366a): 269–277. DOI: https://doi.org/10.2307/2286322. Search in Google Scholar

Fuller, W.A., and J.J. Goyeneche. 1998. “Estimation of The State Variance Component.” Unpublished manuscript. Search in Google Scholar

Gelman, A., J.B. Carlin, H.S. Stern, and D.B. Rubin. 2013. Bayesian Data Analysis. CRC press. DOI: https://doi.org/10.1201/b16018. Search in Google Scholar

Gelman, A., and D.B. Rubin. 1992. “Inference from Iterative Simulation Using Multiple Sequences.” Statistical science 7(4): 457–472. DOI: https://doi.org/10.1214/ss/1177011136. Search in Google Scholar

Geweke, J. 1992. “Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments.” In Bayesian Statistics 4: 169–193. DOI: https://doi.org/10.21034/sr.148. Search in Google Scholar

Good, D. 2014. “Comparing NASS and FSA Planted Acreage Data.” Farmdoc Daily 4(9). Available at: https://farmdocdaily.illinois.edu/2014/01/comparing-nass-fsa-planted-acreage-data.html (accessed January 2014). Search in Google Scholar

Meng, X.-L. 1994. “Posterior Predictive p-Values.” The Annals of Statistics 22(3): 1142–1160. DOI: https://doi.org/10.1214/aos/1176325622. Search in Google Scholar

Nandram, B., N.B. Cruze, and A.L. Erciulescu. 2022. Bayesian Small Area Models under Inequality Constraints with Benchmarking and Double Shrinkage. Research Report RDD-22-02, National Agricultural Statistics Service, USDA. Available at: https://www.nass.usda.gov/Education_and_Outreach/Reports,_Presentations_and_Conferences/reports/ResearchReport_constraintmodel.pdf /(ACCESSEDE jYKY 2022). Search in Google Scholar

Nandram, B., J. Sedransk, and S.J. Smith. 1997. “Order-Restricted Bayesian Estimation of The Age Composition of A Population of Atlantic Cod.” Journal of the American Statistical Association 92(437): 33–40. DOI: https://doi.org/10.2307/2291447. Search in Google Scholar

NASEM (National Academies of Sciences, Engineering, and Medicine). 2017. Improving Crop Estimates by Integrating Multiple Data Sources. National Academies Press. DOI: https://doi.org/10.17226/24892. Search in Google Scholar

Pfeffermann, D. 2013. “New Important Developments in Small Area Estimation.” Statistical Science 28(1): 40–68. DOI: https://doi.org/10.1214/12-STS395. Search in Google Scholar

Plummer, M. 2003. “JAGS: A Program for Analysis of Bayesian Graphical Models using Gibbs Sampling.” 3rd International Workshop on Distributed Statistical Computing (DSC 2003); March 21, Vienna, Austria: 124. Avaiable at: https://www.r-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf. Search in Google Scholar

Rao, J.N.K., and I. Molina. 2015. Small Area Estimation. 2015 John Wiley/Sons, Inc. DOI: https://doi.org/10.1002/9781118735855. Search in Google Scholar

Rubin, D.B. 1984. “Bayesianly Justifiable and Relevant Frequency Calculations for the Applies Statistician.” The Annals of Statistics: 1151–1172. DOI: https://doi.org/10.1214/aos/1176346785. Search in Google Scholar

Sen, D., S. Patra, and D. Dunson. 2018. “Constrained Inference Through Posterior Projections”. arXiv preprint. DOI: https://doi.org/10.48550/arxiv.1812.05741. Search in Google Scholar

Spiegelhalter, D.J., N.G. Best, B.P. Carlin, and A. van der Linde. 2002. “Bayesian Measures of Model Complexity and Fit.” Journal of the Royal Statistical Society: Series B 64(4): 583–639. DOI: https://doi.org/10.1111/1467-9868.00353. Search in Google Scholar

Torabi, M., and J.N.K. Rao. 2014. “On Small Area Estimation under A Sub-Area Level Model.” Journal of Multivariate Analysis 127: 36–55. DOI: https://doi.org/10.1016/j.jmva.2014.02. Search in Google Scholar

USDA FSA (U.S. Department of Agriculture Farm Service Agency). 2018. FSA Handbook: Acreage and Compliance Determinations. 2-CP, Revision 16. Available at: https://www.fsa.usda.gov/Internet/FSA_File/2cp16-a1.pdf (accessed April 2018). Search in Google Scholar

USDA RMA (U.S. Department of Agriculture Risk Management Agency). 2017 The Risk Management Safety Net: Market Penetration and Market Potential-Analysis of the Federal Crop Insurance Portfolio. Available at: https://www.rma.usda.gov/-/media/RMA/Publications/Market-Penetration-and-Market-Potential-2017.ashx?la=en (accessed September 2017). Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo