1. bookVolume 36 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
First Published
01 Oct 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Switching Between Different Non-Hierachical Administrative Areas via Simulated Geo-Coordinates: A Case Study for Student Residents in Berlin

Published Online: 15 Jun 2020
Page range: 297 - 314
Received: 01 Mar 2019
Accepted: 01 Dec 2019
Journal Details
License
Format
Journal
First Published
01 Oct 2013
Publication timeframe
4 times per year
Languages
English
Abstract

The transformation of area aggregates between non-hierarchical area systems (administrative areas) is a standard problem in official statistics. For this problem, we present a proposal which is based on kernel density estimates. The approach applies a modification of a stochastic expectation maximization algorithm, which was proposed in the literature for the transformation of totals on rectangular areas to kernel density estimates. As a by-product of the routine, one obtains simulated geo-coordinates for each unit. With the help of these geo-coordinates, it is possible to calculate case numbers for any area system of interest. The proposed method is evaluated in a design-based simulation based on a close-to-reality, simulated data set with known exact geo-coordinates. In the empirical part, the method is applied to student resident figures from Berlin, Germany. These are known only at the level of ZIP codes, but they are needed for smaller administrative planning districts. Results for (a) student concentration areas and (b) temporal changes in the student residential areas between 2005 and 2015 are presented and discussed.

Keywords

Amt für Statistik Berlin-Brandenburg. 2018. Statistiken zu Bildung und Kultur. Available at: https://www.statistik-berlin-brandenburg.de/BasisZeitreiheGrafik/Zeit-Hochschulen.asp?Ptyp=400&Sageb=21003&creg=BBB&anzwer=7 (accessed February 2019). Search in Google Scholar

Berlin Open Data. 2019. Datensätze. Available at: https://daten.berlin.de/datensaetze (accessed February 2019). Search in Google Scholar

Bradley, J.R., C.K. Wikle, and S.H. Holan. 2016. “Bayesian spatial change of support for count-valued survey data with publication to the American Community Survey.” Journal of the American Statistical Association 111(514): 472 – 487. DOI: https://doi.org/10.1080/01621459.2015.1117471. Search in Google Scholar

Celeux, G., D. Chauveau, and J. Diebolt. 1996. “Stochastic versions of the EM algorithm: an experimental study in the mixture case.” Journal of Statistical Computation and Simulation 55(4): 287–314. DOI: https://doi.org/10.1023/B:STCO.0000039481.32211.5a. Search in Google Scholar

European Commission. 2019. Inspire knowledge base - infrastructure for spatial information in Europe. Available at: https://inspire.ec.europa.eu/ (accessed May 2019). Search in Google Scholar

Eurostat. 2018. Statistical Atlas. Available at: http://ec.europa.eu/eurostat/statistical-atlas/gis/viewer/# (accessed January 2019). Search in Google Scholar

Gallego, F.J., F. Batista, C. Rocha, and S. Mubareka. 2011. “Disaggregating population density of the European Union with CORINE land cover.” International Journal of Geographical Information Science 25(12): 2051–2069. DOI: https://doi.org/10.1080/13658816.2011.583653. Search in Google Scholar

Gasser, T. and H.-G. Müller. 1979. “Kernel estimation of regression functions.” In Smoothing techniques for curve estimation: 23–68. Springer. Search in Google Scholar

Groß, M. 2018. Kernelheaping: Kernel Density Estimation for Heaped and Rounded Data. R package version 2.2.0. Available at: https://cran.r-project.org/web/packages/Kernel-heaping/ (accessed May 2020). Search in Google Scholar

Groß, M., U. Rendtel, T. Schmid, S. Schmon, and N. Tzavidis. 2017. “Estimating the density of ethnic minorities and aged people in Berlin: Multivariate kernel density estimation applied to sensitive geo-referenced administrative data protected via measurement error.” Journal of the Royal Statistical Society: Series A 180(1): 161–183. DOI: https://doi.org/10.1111/rssa.12179. Search in Google Scholar

Holm, A. and G. Schulz. 2018. GentriMap: “A model for measuring gentrification and displacement.” In I. Helbrecht, ed. Gentrification and Resistance: 251–277. Wiesbaden: Springer VS. Search in Google Scholar

Langford, M., G. Higgs, J. Radcliffe, and S. White. 2008. “Urban population distribution models and service accessibility estimation.” Computers, Environment and Urban Systems 32(1): 66–80. Search in Google Scholar

Lautso, K., K. Spiekermann, M. Wegener, I. Sheppard, P. Steadman, A. Martino, R. Domingo, and S. Gayda. 2004. Planning and research of policies land use and transport for increasing urban sustainability. Report, European Commission. Available at: http://www.spiekermann-wegener.de/pro/pdf/PROPOLIS_Final_Report.pdf (accessed February 2019). Search in Google Scholar

McCulloch, C.E. and J.M. Neuhaus. 2001. Generalized linear mixed models. Wiley Online Library. DOI: https://doi.org/10.1002/9781118445112.stat07540. Search in Google Scholar

Mugglin, A.S. and B.P. Carlin. 1998. “Hierarchical modeling in Geographic Information Systems: Population interpolation over incompatible zones.” Journal of Agricultural, Biological and Environmental Statistics 3(2): 111–130. DOI: https://doi.org/10.2307/1400646. Search in Google Scholar

Mugglin, A.S., B.P. Carlin, L. Zhu, and E. Colon. 1999. “Bayesian areal interpolation, estimation, and smoothing: An inferential approach for geographic information systems.” Environment and Planning 31: 1337–1352. DOI: https://doi.org/10.1068/a311337. Search in Google Scholar

OpenStreetMap Foundation. 2019. Service Map. Available at: https://servicemap.hel.fi/?municipality=helsinki&_rdr=Default.aspx (accessed January 2019). Search in Google Scholar

Patterson, Z., M. Kryvobokov, F. Marchal, and M. Bierlaire. 2010. “Disaggregate models with aggregate Two UrbanSim applications.” Journal of Transport and Land Use 3(2): 5–37. DOI: https://doi.org/10.5198/jtlu.v3i2.113. Search in Google Scholar

Rendtel, U. and M. Ruhanen. 2018. “Die Konstruktion von Dienstleistungskarten mit Open Data am Beispiel des lokalen Bedarf an Kinderbetreuung in Berlin.” AStA Wirtschafts- und Sozialstatistisches Archiv 12(3–4): 271–284. DOI: https://doi.org/10.1007/s11943-018-0235-y. Search in Google Scholar

Schmid, T., F. Bruckschen, N. Salvati, and T. Zbiranski. 2017. “Constructing sociodemographic indicators for national statistical institutes by using mobile phone data: estimating literacy rates in Senegal.” Journal of the Royal Statistical Society: Series A 180(4): 1163–1190. DOI: https://doi.org/10.1111/rssa.12305. Search in Google Scholar

Schulz, G. 2017. “Aufwertung und Verdrängung in Berlin – Räumliche Analysen zur Messung von Gentrifizierung.” WISTA – Wirtschaft und Statistik 4: 287–314. Available at: https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/04/aufwertung-verdraengung-berlin-042017.html (accessed April 2020). Search in Google Scholar

Schürmann, C., R. Moeckel, and M. Wegener. 2002. “Microsimulation of urban land use.” ERSA conference papers, European Regional Science Association. August 27th–31st, 2002, Dortmund, Germany. Search in Google Scholar

Senate Department for Urban Development and Housing. 2017. 06.06. population density. 2017 edition. Available at: https://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/edm606_04.htm (accessed January 2019). Search in Google Scholar

Senator für Stadtentwicklung und Umwelt. 2016. Bevölkerungsprognose für Berlin und die Bezirke 2015–2030. Available at: https://www.stadtentwicklung.berlin.de/planen/bevoelkerungsprognose/download/2015-2030/Bericht_Bevprog2015-2030.pdf (accessed February 2019). Search in Google Scholar

Spiekermann, K. and M. Wegener. 2003. “Modelling urban sustainability.” International Journal of Urban Sciences 7(1): 47–64. DOI: https://doi.org/10.1080/12265934.2003.9693522. Search in Google Scholar

Statistische Ämter des Bundes und der Länder. 2015. Zensus Atlas. Available at: https://atlas.zensus2011.de/ (accessed January 2019). Search in Google Scholar

Trevisani, M. and A. Gelfand. 2013. “Spatial misalignment models for small area estimation: a simulation study.” In N. Torelli, F. Pesarin, and A. Bar-Hen, eds. Advances in Theoretical and Applied Statistics Studies in Theoretical and Applied Statistics: 269–279. Berlin, Heidelberg: Springer. Search in Google Scholar

U.S. Census Bureau. 2017. Small area income and poverty estimates (saipe). Available at: https://www.census.gov/data-tools/demo/saipe/saipe.html?s_appName=saipe&map_yearSelector=2017&map_geoSelector=aa_c (accessed January 2019). Search in Google Scholar

Wand, M.P. and M.C. Jones. 1994. “Multivariate plug-in bandwidth selection.” Computational Statistics 9(2): 97–116. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo