Open Access

Olive Tree Vegetative Growth and Fruit Yield at High Air Temperatures

, , , , , ,  and   
Jun 30, 2025

Cite
Download Cover

Aguilera F., Valenzuela L.R. 2012. Microclimatic-induced fluctuations in the flower and pollen production rate of olive trees (Olea europaea L.). Grana 51(3): 228–239. DOI: 10.1080/00173134.2012.659203. Search in Google Scholar

Aguilera F., Orlandi F., Ruiz L., Galán C., Mozo H.G., Bonofiglio T. et al. 2013. La floración del olivo (Olea europea L.) como elemento bioindicador de cambios en el clima mediterráneo: análisis preliminar. El Aceite de Oliva. Proceedings of the Expoliva Symposium. Spain, May 8–11, 8 p. [in Spanish] Search in Google Scholar

Alcalá A.R., Barranco D. 1992. Prediction of flowering time in olive for the Cordoba olive collection. HortScience 27(11): 1205–1207. DOI: 10.21273/hortsci.27.11.1205. Search in Google Scholar

Aybar V.E., de Melo-Abreu J.P., Searles P.S., Matias A.C., del Río C., Caballero J.M., Rousseaux M.C. 2015. Evaluation of olive flowering at low latitude sites in Argentina using a chilling requirement model. Spanish Journal of Agricultural Research 13(1); e09-001; 10 p. DOI: 10.5424/sjar/2015131-6375. Search in Google Scholar

Ben-Ari G., Biton I., Many Y., Namdar D., Samach A. 2021. Elevated temperatures negatively affect olive productive cycle and oil quality. Agronomy 11(8); 1492; 16 p. DOI: 10.3390/agronomy11081492. Search in Google Scholar

Benlloch-González M., Sánchez-Lucas R., Benlloch M., Fernández-Escobar R. 2018. An approach to global warming effects on flowering and fruit set of olive trees growing under field conditions. Scientia Horticulturae 240: 405–410. DOI: 10.1016/j.scienta.2018.06.054. Search in Google Scholar

Blázquez J.M. 1996. The origin and expansion of olive cultivation. World Olive Encyclopaedia, 1st ed. International Olive Oil Council, Spain, pp. 19–20. Search in Google Scholar

Campello F. 2022. Sustentabilidade dos Olivais em Portugal: Desafios e respostas. Princípia, 176 p. [in Portuguese] Search in Google Scholar

Cardoni M., Mercado-Blanco J. 2023. Confronting stresses affecting olive cultivation from the holobiont perspective. Frontiers in Plant Science 14; 1261754; 31 p. DOI: 10.3389/fpls.2023.1261754. Search in Google Scholar

Cuevas J., Rallo L., Rapoport H.F. 1994. Initial fruit set at high temperature in olive, Olea europaea L. Journal of Horticultural Science 69(4): 665–672. DOI: 10.1080/14620316.1994.11516498. Search in Google Scholar

Davies W.J., Zhang J. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology 42(1): 55–76. DOI: 10.1146/annurev.pp.42.060191.000415. Search in Google Scholar

Di Paola A., Chiriacò M.V., Di Paola F., Nieddu G. 2021. A phenological model for olive (Olea europaea L. var europaea) growing in Italy. Plants 10(6); 1115; 15 p. DOI: 10.3390/plants10061115. Search in Google Scholar

Di Paola A., Di Giuseppe E., Gutierrez A.P., Ponti L., Pasqui M. 2023. Climate stressors modulate inter-annual olive yield at province level in Italy: A composite index approach to support crop management. Journal of Agronomy and Crop Science 209(4): 475–488. DOI: 10.1111/jac.12636. Search in Google Scholar

Diaz-Espejo A., Nicolás E., Fernández J.E. 2007. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Plant, Cell and Environment 30(8): 922–933. DOI: 10.1111/j.1365-3040.2007.001686.x. Search in Google Scholar

Didevarasl A., Costa Saura J.M., Spano D., Deiana P., Snyder R.L., Mulas M. et al. 2023. Modeling phenological phases across olive cultivars in the Mediterranean. Plants 12(18); 3181; 20 p. DOI: 10.3390/plants12183181. Search in Google Scholar

Droulia F., Charalampopoulos I. 2022. A review on the observed climate change in Europe and its impacts on viticulture. Atmosphere 13(5); 837; 35 p. DOI: 10.3390/atmos13050837. Search in Google Scholar

Falcioni R., Chicati M.L., de Oliveira R.B., Antunes W.C., Hasanuzzaman M., Demattê J.A.M., Nanni M.R. 2024. Decreased photosynthetic efficiency in Nicotiana tabacum L. under transient heat stress. Plants 13(3); 395; 17 p. DOI: 10.3390/plants13030395. Search in Google Scholar

Fraga H., Pinto J.G., Santos J.A. 2020. Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal. Agricultural Water Management 237; 106193; 9 p. DOI: 10.1016/j.agwat.2020.106193. Search in Google Scholar

Fraga H., Moriondo M., Leolini L., Santos J.A. 2021. Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy 11(1); 56; 15 p. DOI: 10.3390/agronomy11010056. Search in Google Scholar

Fraga H., Guimarães N., Freitas T.R., Malheiro A.C., Santos J.A. 2022. Future scenarios for olive tree and grapevine potential yields in the World Heritage Côa region, Portugal. Agronomy 12(2); 350; 14 p. DOI: 10.3390/agronomy12020350. Search in Google Scholar

Garrido A., Fernández-González M., Vázquez-Ruiz R.A., Rodríguez-Rajo F.J., Aira M.J. 2021. Reproductive biology of olive trees (Arbequina cultivar) at the northern limit of their distribution areas. Forests 12(2); 204; 16 p. DOI: 10.3390/f12020204. Search in Google Scholar

Giorgi F., Lionello P. 2008. Climate change projections for the Mediterranean region. Global and Planetary Change 63(2–3): 90–104. DOI: 10.1016/j.gloplacha.2007.09.005. Search in Google Scholar

Hackett W.P., Hartmann H.T. 1967. The influence of temperature on floral initiation in the olive. Physiologia Plantarum 20(2): 430–436. DOI: 10.1111/j.1399-3054.1967.tb07183.x. Search in Google Scholar

Haworth M., Marino G., Brunetti C., Killi D., De Carlo A., Centritto M. 2018a. The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L.) – A case study of the 2017 heat wave. Plants 7(4); 76; 13 p. DOI: 10.3390/plants7040076. Search in Google Scholar

Haworth M., Marino G., Cosentino S.L., Brunetti C., De Carlo A., Avola G. et al. 2018b. Increased free abscisic acid during drought enhances stomatal sensitivity and modifies stomatal behaviour in fast growing giant reed (Arundo donax L.). Environmental and Experimental Botany 147: 116–124. DOI: 10.1016/j.envexpbot.2017.11.002. Search in Google Scholar

Hernandez-Santana V., Fernández J.E., Cuevas M.V., Perez-Martin A., Diaz-Espejo A. 2017. Photosynthetic limitations by water deficit: Effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high density olive orchards. Agricultural Water Management 184: 9–18. DOI: 10.1016/j.agwat.2016.12.016. Search in Google Scholar

Inês C., Gomez-Jimenez M.C., Cordeiro A.M. 2023. Inflorescence emergence and flowering response of olive cultivars grown in Olive Reference Collection of Portugal (ORCP). Plants 12(11); 2086; 16 p. DOI: 10.3390/plants12112086. Search in Google Scholar

IOC 1997. Methodology for the primary and secondary char-acterisation of olive varieties. International Olive Council. European Union, RESGEN-CT project (96/97). Search in Google Scholar

IPMA 2023. Boletim Anual 2022. Portuguese Institute of Sea and Atmosphere, Version 1.0, 29 p. https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20230328/RLuazVlyZulVPByQUNey/cli_20220101_20221231_pcl_aa_co_pt.pdf [in Portuguese] Search in Google Scholar

Kalfas I., Anagnostopoulou C., Manios E.M. 2023. The impact of climate change on olive crop production in Halkidiki, Greece. Environmental Sciences Proceedings 26(1); 69; 6 p. DOI: 10.3390/environsciproc2023026069. Search in Google Scholar

Koubouris G.C., Metzidakis I.T., Vasilakakis M.D. 2009. Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and geno-type. Environmental and Experimental Botany 67(1): 209–214. DOI: 10.1016/j.envexpbot.2009.06.002. Search in Google Scholar

Landis J.R., Koch G.G. 1977. The measurement of observer agreement for categorical data. Biometrics 33(1): 159–174. DOI: 10.2307/2529310. Search in Google Scholar

Lavee S. 1996. Biology and physiology of the olive. World Olive Encyclopaedia, 1st ed. International Olive Oil Council, Spain, pp. 59–110. Search in Google Scholar

Lorite I.J., Gabaldón-Leal C., Ruiz-Ramos M., Belaj A., de la Rosa R., León L., Santos C. 2018. Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agricultural Water Management 204: 247–261. DOI: 10.1016/j.agwat.2018.04.008. Search in Google Scholar

Mafrica R., Piscopo A., De Bruno A., Poiana M. 2021. Effects of climate on fruit growth and development on olive oil quality in cultivar Carolea. Agriculture 11(2); 147; 17 p. DOI: 10.3390/agriculture11020147. Search in Google Scholar

MAM 2015. Plano Nacional para os Recursos Genéticos Vegetais. Ministry of Agriculture and the Sea. Lisbon, Portugal, 30 p. https://www.iniav.pt/images/INIAV/organica/BPGV/pnrgv_web.pdf [in Portuguese] Search in Google Scholar

Marino G., Pallozzi E., Cocozza C., Tognetti R., Giovannelli A., Cantini C., Centritto M. 2014. Assessing gas exchange, sap flow and water relations using tree canopy spectral reflectance indices in irrigated and rainfed Olea europaea L. Environmental and Experimental Botany 99: 43–52. DOI: 10.1016/j.envexpbot.2013.10.008. Search in Google Scholar

de Melo-Abreu J.P., Barranco D., Cordeiro A.M., Tous J., Rogado B.M., Villalobos F.J. 2004. Modelling olive flowering date using chilling for dormancy release and thermal time. Agricultural and Forest Meteorology 125(1–2): 117–127. DOI: 10.1016/j.agrformet.2004.02.009. Search in Google Scholar

Navas-Lopez J.F., León L., Rapoport H.F., Moreno-Alías I., Lorite I.J., de la Rosa R. 2019. Genotype, environment and their interaction effects on olive tree flowering phenology and flower quality. Euphytica 215; 184; 13 p. DOI: 10.1007/s10681-019-2503-5. Search in Google Scholar

Nissim Y., Shloberg M., Biton I., Many Y., Doron-Faigenboim A., Zemach H. et al. 2020. High temperature environment reduces olive oil yield and quality. PLoS One 15(4); e0231956; 24 p. DOI: 10.1371/journal.pone.0231956. Search in Google Scholar

Orlandi F., Rojo J., Picornell A., Oteros J., Pérez-Badia R., Fornaciari M. 2020. Impact of climate change on olive crop production in Italy. Atmosphere 11(6); 595; 15 p. DOI: 10.3390/atmos11060595. Search in Google Scholar

Osborne C.P., Chuine I., Viner D., Woodward F.I. 2000. Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant, Cell and Environment 23(7): 701–710. DOI: 10.1046/j.1365-3040.2000.00584.x. Search in Google Scholar

Parri S., Romi M., Hoshika Y., Giovannelli A., Dias M.C., Piritore F.C. et al. 2023. Morpho-physiological responses of three Italian olive tree (Olea europaea L.) cultivars to drought stress. Horticulturae 9(7); 830; 19 p. DOI: 10.3390/horticulturae9070830. Search in Google Scholar

Petruccelli R., Bartolini G., Ganino T., Zelasco S., Lombardo L., Perri E. et al. 2022. Cold stress, freezing adaptation, varietal susceptibility of Olea europaea L.: A review. Plants 11(10); 1367; 24 p. DOI: 10.3390/plants11101367. Search in Google Scholar

Picornell A., Abreu I., Ribeiro H. 2023. Trends and future projections of Olea flowering in the western Mediterranean: The example of the Alentejo region (Portugal). Agricultural and Forest Meteorology 339; 109559; 11 p. DOI: 10.1016/j.agrformet.2023.109559. Search in Google Scholar

Rallo L. 2005. Las variedades del olivo en España: una aproximación cronológica. In: Rallo L., Barranco D., Caballero J.M., del Río C., Martín A., Tous J., Trujillo I. (Eds.), Variedades de Olivo en España. Mundi-Prensa, Spain, pp. 15–44. [in Spanish] Search in Google Scholar

Rallo L., Cuevas J. 2008. Fructificación y producción. In: Barranco D., Fernández-Escobar R., Rallo L. (Eds.), El cultivo del Olivo, 6th ed. Mundi-Prensa, Spain, pp. 127–162. [in Spanish] Search in Google Scholar

Rapoport H.F., Hammami S.B.M., Martins P., Pérez-Priego O., Orgaz F. 2012. Influence of water deficits at different times during olive tree inflorescence and flower development. Environmental and Experimental Botany 77: 227–233. DOI: 10.1016/j.envexpbot.2011.11.021. Search in Google Scholar

del Río C., Caballero J.M., García-Fernandez M.D. 2005a. Vigor. In: Rallo L., Barranco D., Caballero J.M., del Río C., Martín A., Tous J., Trujillo I. (Eds.), Variedades de Olivo en España. Mundi-Prensa, Spain, pp. 247–256. [in Spanish] Search in Google Scholar

del Río C., Caballero J.M., García-Fernandez M.D. 2005b. Producción. In: Rallo L., Barranco D., Caballero J.M., del Río C., Martín A., Tous J., Trujillo I. (Eds.), Variedades de Olivo en España. Mundi-Prensa, Spain, pp. 257–274. [in Spanish] Search in Google Scholar

Rojas-Gómez M., Moral J., López-Orozco R., Cabello D., Oteros J., Barranco D. et al. 2023. Pollen production in olive cultivars and its interannual variability. Annals of Botany 132(6): 1145–1158. DOI: 10.1093/aob/mcad163. Search in Google Scholar

Rojo J., Salido P., Pérez-Badia R. 2015. Flower and pollen production in the ‘Cornicabra’ olive (Olea europaea L.) cultivar and the influence of environmental factors. Trees 29(4): 1235–1245. DOI: 10.1007/s00468-015-1203-6. Search in Google Scholar

Sanz-Cortés F., Martínez-Calvo J., Badenes M.L., Bleiholder H., Hack H., Llácer G., Meier U. 2002. Phenological growth stages of olive trees (Olea europaea). Annals of Applied Biology 140(2): 151–157. DOI: 10.1111/j.1744-7348.2002.tb00167.x. Search in Google Scholar

Tholen D., Ethier G., Genty B., Pepin S., Zhu X.-G. 2012. Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant, Cell and Environment 35(12): 2087–2103. DOI: 10.1111/j.1365-3040.2012.02538.x. Search in Google Scholar

Tous J., Romero A., Plana J. 1998. Comportamiento agronómico y comercial de cinco variedades de olivo en Tarragona. Investigación Agraria. Producción y Protección Vegetales 13(1–2): 97–110. [in Spanish] Search in Google Scholar

Tous J., del Río C., Caballero J.M., Rallo L. 2005. Variabilidad y selección. In: Rallo L., Barranco D., Caballero J.M., del Río C., Martín A., Tous J., Trujillo I. (Eds.), Variedades de Olivo en España. Mundi-Prensa, Spain, pp. 233–478. [in Spanish] Search in Google Scholar

van der Vyver C., Peters S. 2017. How do plants deal with dry days? Frontiers for Young Minds 5; 58; 9 p. DOI: 10.3389/frym.2017.00058. Search in Google Scholar

Villalobos F.J., López-Bernal Á., García-Tejera O., Testi L. 2023. Is olive crop modelling ready to assess the impacts of global change? Frontiers in Plant Science 14; 1249793; 14 p. DOI: 10.3389/fpls.2023.1249793. Search in Google Scholar

Vuletin Selak G., Cuevas J., Ban S.G., Pinillos V., Dumicic G., Perica S. 2014. The effect of temperature on the duration of the effective pollination period in ‘Oblica’ olive (Olea europaea) cultivar. Annals of Applied Biology 164(1): 85–94. DOI: 10.1111/aab.12082. Search in Google Scholar

Yu J., Conrad A.O., Decroocq V., Zhebentyayeva T., Williams D.E., Bennett D. et al. 2020. Distinctive gene expression patterns define endodormancy to ecodormancy transition in apricot and peach. Frontiers in Plant Science 11; 180; 24 p. DOI: 10.3389/fpls.2020.00180. Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Biotechnology, Plant Science, Ecology, Life Sciences, other