Open Access

Spatial patterns of evaporation in a small catchment

, , , , , ,  and   
Nov 21, 2024

Cite
Download Cover

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements. FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy. Search in Google Scholar

Anderson, M.C., Kustas, W.P., Alfieri, J.G., Gao, F., Hain, C., Prueger, J.H., Evett, S., Colaizzi, P., Howell, T., Chavez, J.L., 2012. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX’08 field campaign. Advances in Water Resources, 50, 162–177. Search in Google Scholar

Armstrong, R.N., Pomeroy, J.W., Martz, L.W., 2019. Spatial variability of mean daily estimates of actual evaporation from remotely sensed imagery and surface reference data. Hydrology and Earth System Sciences, 23, 4891–4907. Search in Google Scholar

Bastiaanssen, W.G.M., Noordman, E.J.M., Pelgrum, H., Davids, G., Thoreson, B.P., Allen, R.G., 2005. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131, 1, 85–93. Search in Google Scholar

Blöschl, G., Blaschke, A.P., Broer, M., Bucher, C., Carr, G., Chen, X., Eder, A., Exner-Kittridge, M., Farnleitner, A., Flores-Orozco, A., Haas, P., Hogan, P., Kazemi Amiri, A., Oismüller, M., Parajka, J., Silasari, R., Stadler, P., Strauss, P., Vreugdenhil, M., Wagner, W., Zessner, M., 2016. The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypothesis-driven observatory. Hydrology and Earth System Sciences, 20, 227–255. Search in Google Scholar

Bouwer, L.M., Biggs, T.W., Aerts, J.C.J.H., 2008. Estimates of spatial variation in evaporation using satellite-derived surface temperature and a water balance model. Hydrological Processes, 22, 5, 670–682. Search in Google Scholar

Denager, T., Looms, M.C., Sonnenborg, T.O., Jensen, K.H., 2020. Comparison of evapotranspiration estimates using the water balance and the eddy covariance methods. Vadose Zone Journal, 19, 1, e20032. Search in Google Scholar

Eshonkulov, R., Poyda, A., Ingwersen, J., Wizemann, H.-D., Weber, T.K.D., Kremer, P., Högy, P., Pulatov, A., Streck, T., 2019. Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany. Biogeosciences, 16, 2, 521–540. Search in Google Scholar

Eswar, R., Sekhar, M., Bhattacharya, B.K., 2017. Comparison of three remote-sensing-based models for the estimation of latent heat flux over India. Hydrological Sciences Journal, 62, 16, 2705–2719. Search in Google Scholar

Exner-Kittridge, M., Strauss, P., Blöschl, G., Eder, A., Saracevic, E., Zessner, M., 2016. The seasonal dynamics of the stream sources and input flow paths of water and nitrogen of an Austrian headwater agricultural catchment. Science of the Total Environment, 542, Part A, 935–945. Search in Google Scholar

Fischer, M., Trnka, M., Hlavinka, P., Orság, M., Kučera, J., Žalud, Z., 2011. Identifying the Fao-56 crop coefficient for high density poplar plantation: the role of interception in estimation of evapotranspiration. In: Šiška, B., Hauptvogl, M., Eliašová, M. (eds.). Bioclimate: Source and Limit of Social Development International Scientific Conference. Topoľčianky, Slovakia. Search in Google Scholar

Foken, T., 2008. The energy balance closure problem: An overview. Ecological Applications, 18, 6, 1351–1367. Hatfield, J.L., Prueger, J.H., 2011. Spatial and Temporal Variation in Evapotranspiration, Evapotranspiration - From Measurements to Agricultural and Environmental Applications. IntechOpen, 10.5772/17852. Search in Google Scholar

Hssaine, B., Chehbouni, A., Er-Raki, S., Khabba, S., Ezzahar, J., Ouaadi, N., Ojha, N., Rivalland, V., Merlin, O., 2021. On the utility of high-resolution soil moisture data for better constraining thermal-based energy balance over three semi-arid agricultural areas. Remote Sensing, 13, 4, 727. Search in Google Scholar

Imukova, K., Ingwersen, J., Hevart, M., Streck, T., 2016. Energy balance closure on a winter wheat stand: comparing the eddy covariance technique with the soil water balance method. Biogeosciences, 13, 1, 63–75. Search in Google Scholar

Jiang, Z.-Y., Yang, Z.-G., Zhang, S.-Y., Liao, C.-M., Hu, Z.-M., Cao, R.-C., Wu, H.-W., 2020. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin. Journal of Environmental Management, 262, 110310. Search in Google Scholar

Kustas, W.P., Hatfield, J.L., Prueger, J.H., 2005. The soil moisture-atmosphere coupling experiment (SMACEX): background, hydrometeorological conditions, and preliminary findings. Journal of Hydrometeorology, 6, 6, 791–804. Search in Google Scholar

Leuning, R., van Gorsel, E., Massman, W.J., Isaac, P.R., 2012. Reflections on the surface energy imbalance problem. Agricultural and Forest Meteorology, 156, 65–74. Search in Google Scholar

Liang, L., Li, L., Liu, Q., 2011. Spatio-temporal variations of reference crop evapotranspiration and pan evaporation in the West Songnen Plain of China. Hydrological Sciences Journal, 56, 7, 1300–1313. Search in Google Scholar

Mauder, M., Liebethal, C., Göckede M., Leps, J.-P., Beyrich, F., Foken, T., 2006. Processing and quality control of flux data during the LITFASS-2003. Boundary-Layer Meteorology, 121, 67–88. Search in Google Scholar

Mauder, M., Foken, T., 2015. Eddy-Covariance Software TK3. In Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (update). University of Bayreuth, 67 p. Search in Google Scholar

Mo, X., Liu, S., Lin, Z., Zhao, W., 2004. Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. Journal of Hydrology, 285, 1–4, 125–142. Search in Google Scholar

Moore, C.J., 1986. Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology, 37, 17–35. Search in Google Scholar

Prueger, J.H., Hatfield, J.L., Parkin, T.B., Kustas, W.P., Hipps, L.E., Neale, C.M.U., MacPherson, J.I., Eichinger, W.E., Cooper, D.I., 2005. Tower and aircraft eddy covariance measurements of water vapor, energy, and carbon dioxide fluxes during SMACEX. Journal of Hydrometeorology, 6, 6, 954–960. Search in Google Scholar

Ruhoff, A.L., Paz, A.R., Aragao, L.E.O.C., Mu, Q., Malhi, Y., Collischonn, W., Rocha, H.R., Running, S.W., 2013. Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrological Sciences Journal, 58, 8, 1658–1676. Search in Google Scholar

Schotanus, P., Nieuwstadt, F.T.M., De Bruin, H.A.R., 1983. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorology, 26, 81–93. Search in Google Scholar

Scott, R.L., 2010. Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agricultural and Forest Meteorology, 150, 2, 219–225. Search in Google Scholar

Shimizu, T., Kumagai, T., Kobayashi, M., Tamai, K., Iida, S., Kabeya, N., Ikawa, R., Tateishi, M., Miyazawa, Y., Shimizu, A., 2015. Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (2): Comparison of eddy covariance, water budget and sap-flow plus interception loss. Journal of Hydrology, 522, 250–264. Search in Google Scholar

Széles, B., Broer, M., Parajka, J., Hogan, P., Eder, A., Strauss, P., Blöschl, G., 2018. Separation of scales in transpiration effects on low flows: A spatial analysis in the hydrological open air laboratory. Water Resources Research, 54, 9, 6168–6188. Search in Google Scholar

Tie, Q., Hu, H., Tian, F., Holbrook, N.M., 2018. Comparing different methods for determining forest evapotranspiration and its components at multiple temporal scales. Science of the Total Environment, 633, 12–29. Search in Google Scholar

Valayamkunnath, P., Sridhar, V., Zhao, W., Allen, R.G., 2018. Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, and modeling across three ecosystems in a semiarid climate. Agricultural and Forest Meteorology, 248, 22–47. Search in Google Scholar

Webb, E.K., Pearman, G.I., Leuning, R., 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 447, 85–100. Search in Google Scholar

Weisman, M.L., Klemp, J.B., 1986. Characteristics of isolated convective storms. In: Ray, P.S. (ed.): Mesoscale Meteorology and Forecasting, Ch. 15. American Meteorological Society, Boston, MA, pp. 331–358. Search in Google Scholar

Wilson, K.B., Hanson, P.J., Mulholland, P.J., Baldocchi, D.D., Wullschleger, S.D., 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 106, 2, 153–168. Search in Google Scholar

Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B.E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., Verma, S., 2002. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 1–4, 223–243. Search in Google Scholar

Xu, C., Gong, L., Jiang, T., Chen, D., Singh, V.P., 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology, 327, 1–2, 81–93. Search in Google Scholar

Zhang, X., Kang, S., Zhang, L., Liu, J., 2010. Spatial variation of climatology monthly crop reference evapotranspiration and sensitivity coefficients in Shiyang river basin of northwest China. Agricultural Water Management, 97, 10, 1506–1516. Search in Google Scholar

Zhang, Z., Tian, F., Hu, H., Yang, P., 2014. A comparison of methods for determining field evapotranspiration: photosynthesis system, sap flow, and eddy covariance. Hydrology and Earth System Sciences, 18, 3, 1053–1072. Search in Google Scholar

Zhou, L., Wang, Y., Jia, Q., Li, R., Zhou, M., Zhou, G., 2019. Evapotranspiration over a rainfed maize field in northeast China: How are relationships between the environment and terrestrial evapotranspiration mediated by leaf area? Agricultural Water Management, 221, 538–546. Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, Engineering, other