[
Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements. FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy.
]Search in Google Scholar
[
Anderson, M.C., Kustas, W.P., Alfieri, J.G., Gao, F., Hain, C., Prueger, J.H., Evett, S., Colaizzi, P., Howell, T., Chavez, J.L., 2012. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX’08 field campaign. Advances in Water Resources, 50, 162–177.
]Search in Google Scholar
[
Armstrong, R.N., Pomeroy, J.W., Martz, L.W., 2019. Spatial variability of mean daily estimates of actual evaporation from remotely sensed imagery and surface reference data. Hydrology and Earth System Sciences, 23, 4891–4907.
]Search in Google Scholar
[
Bastiaanssen, W.G.M., Noordman, E.J.M., Pelgrum, H., Davids, G., Thoreson, B.P., Allen, R.G., 2005. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131, 1, 85–93.
]Search in Google Scholar
[
Blöschl, G., Blaschke, A.P., Broer, M., Bucher, C., Carr, G., Chen, X., Eder, A., Exner-Kittridge, M., Farnleitner, A., Flores-Orozco, A., Haas, P., Hogan, P., Kazemi Amiri, A., Oismüller, M., Parajka, J., Silasari, R., Stadler, P., Strauss, P., Vreugdenhil, M., Wagner, W., Zessner, M., 2016. The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypothesis-driven observatory. Hydrology and Earth System Sciences, 20, 227–255.
]Search in Google Scholar
[
Bouwer, L.M., Biggs, T.W., Aerts, J.C.J.H., 2008. Estimates of spatial variation in evaporation using satellite-derived surface temperature and a water balance model. Hydrological Processes, 22, 5, 670–682.
]Search in Google Scholar
[
Denager, T., Looms, M.C., Sonnenborg, T.O., Jensen, K.H., 2020. Comparison of evapotranspiration estimates using the water balance and the eddy covariance methods. Vadose Zone Journal, 19, 1, e20032.
]Search in Google Scholar
[
Eshonkulov, R., Poyda, A., Ingwersen, J., Wizemann, H.-D., Weber, T.K.D., Kremer, P., Högy, P., Pulatov, A., Streck, T., 2019. Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany. Biogeosciences, 16, 2, 521–540.
]Search in Google Scholar
[
Eswar, R., Sekhar, M., Bhattacharya, B.K., 2017. Comparison of three remote-sensing-based models for the estimation of latent heat flux over India. Hydrological Sciences Journal, 62, 16, 2705–2719.
]Search in Google Scholar
[
Exner-Kittridge, M., Strauss, P., Blöschl, G., Eder, A., Saracevic, E., Zessner, M., 2016. The seasonal dynamics of the stream sources and input flow paths of water and nitrogen of an Austrian headwater agricultural catchment. Science of the Total Environment, 542, Part A, 935–945.
]Search in Google Scholar
[
Fischer, M., Trnka, M., Hlavinka, P., Orság, M., Kučera, J., Žalud, Z., 2011. Identifying the Fao-56 crop coefficient for high density poplar plantation: the role of interception in estimation of evapotranspiration. In: Šiška, B., Hauptvogl, M., Eliašová, M. (eds.). Bioclimate: Source and Limit of Social Development International Scientific Conference. Topoľčianky, Slovakia.
]Search in Google Scholar
[
Foken, T., 2008. The energy balance closure problem: An overview. Ecological Applications, 18, 6, 1351–1367. Hatfield, J.L., Prueger, J.H., 2011. Spatial and Temporal Variation in Evapotranspiration, Evapotranspiration - From Measurements to Agricultural and Environmental Applications. IntechOpen, 10.5772/17852.
]Search in Google Scholar
[
Hssaine, B., Chehbouni, A., Er-Raki, S., Khabba, S., Ezzahar, J., Ouaadi, N., Ojha, N., Rivalland, V., Merlin, O., 2021. On the utility of high-resolution soil moisture data for better constraining thermal-based energy balance over three semi-arid agricultural areas. Remote Sensing, 13, 4, 727.
]Search in Google Scholar
[
Imukova, K., Ingwersen, J., Hevart, M., Streck, T., 2016. Energy balance closure on a winter wheat stand: comparing the eddy covariance technique with the soil water balance method. Biogeosciences, 13, 1, 63–75.
]Search in Google Scholar
[
Jiang, Z.-Y., Yang, Z.-G., Zhang, S.-Y., Liao, C.-M., Hu, Z.-M., Cao, R.-C., Wu, H.-W., 2020. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin. Journal of Environmental Management, 262, 110310.
]Search in Google Scholar
[
Kustas, W.P., Hatfield, J.L., Prueger, J.H., 2005. The soil moisture-atmosphere coupling experiment (SMACEX): background, hydrometeorological conditions, and preliminary findings. Journal of Hydrometeorology, 6, 6, 791–804.
]Search in Google Scholar
[
Leuning, R., van Gorsel, E., Massman, W.J., Isaac, P.R., 2012. Reflections on the surface energy imbalance problem. Agricultural and Forest Meteorology, 156, 65–74.
]Search in Google Scholar
[
Liang, L., Li, L., Liu, Q., 2011. Spatio-temporal variations of reference crop evapotranspiration and pan evaporation in the West Songnen Plain of China. Hydrological Sciences Journal, 56, 7, 1300–1313.
]Search in Google Scholar
[
Mauder, M., Liebethal, C., Göckede M., Leps, J.-P., Beyrich, F., Foken, T., 2006. Processing and quality control of flux data during the LITFASS-2003. Boundary-Layer Meteorology, 121, 67–88.
]Search in Google Scholar
[
Mauder, M., Foken, T., 2015. Eddy-Covariance Software TK3. In Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (update). University of Bayreuth, 67 p.
]Search in Google Scholar
[
Mo, X., Liu, S., Lin, Z., Zhao, W., 2004. Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. Journal of Hydrology, 285, 1–4, 125–142.
]Search in Google Scholar
[
Moore, C.J., 1986. Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology, 37, 17–35.
]Search in Google Scholar
[
Prueger, J.H., Hatfield, J.L., Parkin, T.B., Kustas, W.P., Hipps, L.E., Neale, C.M.U., MacPherson, J.I., Eichinger, W.E., Cooper, D.I., 2005. Tower and aircraft eddy covariance measurements of water vapor, energy, and carbon dioxide fluxes during SMACEX. Journal of Hydrometeorology, 6, 6, 954–960.
]Search in Google Scholar
[
Ruhoff, A.L., Paz, A.R., Aragao, L.E.O.C., Mu, Q., Malhi, Y., Collischonn, W., Rocha, H.R., Running, S.W., 2013. Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrological Sciences Journal, 58, 8, 1658–1676.
]Search in Google Scholar
[
Schotanus, P., Nieuwstadt, F.T.M., De Bruin, H.A.R., 1983. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorology, 26, 81–93.
]Search in Google Scholar
[
Scott, R.L., 2010. Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agricultural and Forest Meteorology, 150, 2, 219–225.
]Search in Google Scholar
[
Shimizu, T., Kumagai, T., Kobayashi, M., Tamai, K., Iida, S., Kabeya, N., Ikawa, R., Tateishi, M., Miyazawa, Y., Shimizu, A., 2015. Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (2): Comparison of eddy covariance, water budget and sap-flow plus interception loss. Journal of Hydrology, 522, 250–264.
]Search in Google Scholar
[
Széles, B., Broer, M., Parajka, J., Hogan, P., Eder, A., Strauss, P., Blöschl, G., 2018. Separation of scales in transpiration effects on low flows: A spatial analysis in the hydrological open air laboratory. Water Resources Research, 54, 9, 6168–6188.
]Search in Google Scholar
[
Tie, Q., Hu, H., Tian, F., Holbrook, N.M., 2018. Comparing different methods for determining forest evapotranspiration and its components at multiple temporal scales. Science of the Total Environment, 633, 12–29.
]Search in Google Scholar
[
Valayamkunnath, P., Sridhar, V., Zhao, W., Allen, R.G., 2018. Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, and modeling across three ecosystems in a semiarid climate. Agricultural and Forest Meteorology, 248, 22–47.
]Search in Google Scholar
[
Webb, E.K., Pearman, G.I., Leuning, R., 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 447, 85–100.
]Search in Google Scholar
[
Weisman, M.L., Klemp, J.B., 1986. Characteristics of isolated convective storms. In: Ray, P.S. (ed.): Mesoscale Meteorology and Forecasting, Ch. 15. American Meteorological Society, Boston, MA, pp. 331–358.
]Search in Google Scholar
[
Wilson, K.B., Hanson, P.J., Mulholland, P.J., Baldocchi, D.D., Wullschleger, S.D., 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 106, 2, 153–168.
]Search in Google Scholar
[
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B.E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., Verma, S., 2002. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 1–4, 223–243.
]Search in Google Scholar
[
Xu, C., Gong, L., Jiang, T., Chen, D., Singh, V.P., 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology, 327, 1–2, 81–93.
]Search in Google Scholar
[
Zhang, X., Kang, S., Zhang, L., Liu, J., 2010. Spatial variation of climatology monthly crop reference evapotranspiration and sensitivity coefficients in Shiyang river basin of northwest China. Agricultural Water Management, 97, 10, 1506–1516.
]Search in Google Scholar
[
Zhang, Z., Tian, F., Hu, H., Yang, P., 2014. A comparison of methods for determining field evapotranspiration: photosynthesis system, sap flow, and eddy covariance. Hydrology and Earth System Sciences, 18, 3, 1053–1072.
]Search in Google Scholar
[
Zhou, L., Wang, Y., Jia, Q., Li, R., Zhou, M., Zhou, G., 2019. Evapotranspiration over a rainfed maize field in northeast China: How are relationships between the environment and terrestrial evapotranspiration mediated by leaf area? Agricultural Water Management, 221, 538–546.
]Search in Google Scholar