Open Access

Multidimensional analysis of NDVI dynamics in response to climate and land use/land cover change in Northwest Algeria

, ,  and   
Nov 21, 2024

Cite
Download Cover

Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C., 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191 Search in Google Scholar

Amer, R.A.-M., Baahmed, D., Cherif, E.-A., Iddou, A., 2021. Trend detection of hydroclimatic parameters in central coastal basin of Oran in Algeria: is there any impact on water resources? Arab. J. Geosci., 14, 1–20. https://doi.org/10.1007/s12517-021-07816-7 Search in Google Scholar

Anyamba, A., Small, J.L., Tucker, C.J., Pak, E.W., 2014. Thirtytwo years of Sahelian zone growing season non-stationary NDVI3g patterns and trends. Remote Sens., 6, 4, 3101–3122. https://doi.org/10.3390/rs6043101 Search in Google Scholar

Atzberger, C., Klisch, A., Mattiuzzi, M., Vuolo, F., 2014. Phenological metrics derived over the European continent from NDVI3g data and MODIS time series. Remote Sens., 6, 1, 257–284. https://doi.org/10.3390/rs6010257 Search in Google Scholar

Ayantobo, O.O., Wei, J., 2019. Appraising regional multicategory and multi-scalar drought monitoring using standardized moisture anomaly index (SZI): A water-energy balance approach. J. Hydrol., 579, 124139. https://doi.org/10.1016/j.jhydrol.2019.124139 Search in Google Scholar

Baahmed, D., Oudin, L., Errih, M., 2015. Current runoff variations in the Macta catchment (Algeria): is climate the sole factor? Hydrol. Sci. J., 60, 1331–1339. https://doi.org/10.1080/02626667.2014.975708 Search in Google Scholar

Babüroğlu, E.S., Durmuşoğlu, A., Dereli, T., 2021. Novel hybrid pair recommendations based on a large-scale comparative study of concept drift detection. Expert Syst. Appl., 163, 113786. https://doi.org/10.1016/j.eswa.2020.113786 Search in Google Scholar

Bai, X.Y., Fan, Z.M., Yue, T.X., 2023. Dynamic pattern-effect relationships between precipitation and vegetation in the semi-arid and semi-humid area of China. Catena, 232, 107425. https://doi.org/10.1016/j.catena.2023.107425 Search in Google Scholar

Barbosa, H.A., Huete, A.R., Baethgen, W.E., 2006. A 20-year study of NDVI variability over the Northeast Region of Brazil. J. Arid Environ., 67, 288–307. https://doi.org/10.1016/j.jaridenv.2006.02.022 Search in Google Scholar

Beddal, D., Achite, M., Baahmed, D., 2020. Streamflow prediction using data-driven models: Case study of Wadi Hounet, northwestern Algeria. J. Water Land Dev., 47, 1, 16-24. https://doi.org/10.24425/jwld.2020.135027 Search in Google Scholar

Benaissa, H., Benabdeli, K., 2019. Evaluation de l’impact du parcours sur la végétation du Parc national de Tlemcen (Algérie nord-occidentale). Geo. Eco. Trop., 43, 129–136. Search in Google Scholar

Bentekhici, N., Bellal, S.A., Zegrar, A., 2020. Contribution of remote sensing and GIS to mapping the fire risk of Mediterranean forest case of the forest massif of Tlemcen (North-West Algeria). Nat. Hazards, 104, 811–831. https://doi.org/10.1007/s11069-020-04191-6 Search in Google Scholar

Berhail, S., Tourki, M., Merrouche, I., Bendekiche, H., 2022. Geo-statistical assessment of meteorological drought in the context of climate change: case of the Macta basin (Northwest of Algeria). Model. Earth Syst. Environ., 8, 81–101. https://doi.org/10.1007/s40808-020-01055-7 Search in Google Scholar

Birtwistle, A.N., Laituri, M., Bledsoe, B., Friedman, J.M., 2016. Using NDVI to measure precipitation in semi-arid landscapes. J. Arid Environ., 131, 15–24. https://doi.org/10.1016/j.jaridenv.2016.04.004 Search in Google Scholar

Buyantuyev, A., Wu, J., 2009. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J. Arid Environ., 73, 512-520. https://doi.org/10.1016/j.jaridenv.2008.12.015 Search in Google Scholar

Cai, Q., Liu, Y., Zhang, H., Song, H., Li, Q., Sun, C., Wang, L., Fang, C., Liu, R., 2021. Evolution of the dry-wet variations since 1834 CE in the Lüliang Mountains, north China and its relationship with the Asian summer monsoon. Ecol. Indic., 121, 107089. https://doi.org/10.1016/j.ecolind.2020.107089 Search in Google Scholar

Cavalli, S., Penzotti, G., Amoretti, M., Caselli, S., 2021. A machine learning approach for NDVI forecasting based on Sentinel-2 data. In: Proceedings of the 16th International Conference on Software Technologies ICSOFT - Volume 1, 473–480. https://doi.org/10.5220/0010544504730480 Search in Google Scholar

Chevan, A., Sutherland, M., 1991. Hierarchical partitioning. Am. Stat., 45, 90–96. Search in Google Scholar

Chrair, M., Khaldi, A., Hamadouche, M.A., Hamimed, A., Cernesson, F., Alkan, M., 2020. Evaluation of the effects of land cover changes and urbanization on land surface temperature: a remote sensing study of sub-watershed of Oued Fekan, Northwest Algeria. Sigma J. Eng. Nat. Sci., 38, 907–926. Search in Google Scholar

Dagnachew, M., Dagnachew, M., Kebede, A., Moges, A., Abebe, A., 2020. Effects of climate variability on Normalized Difference Vegetation Index (NDVI) in the Gojeb River Catchment, Omo-Gibe Basin, Ethiopia. Adv. Meteorol., 2020, 3263246. https://doi.org/10.1155/2020/8263246 Search in Google Scholar

Fensholt, R., Langanke, T., Rasmussen, K., Reenberg, A., Prince, S.D., Tucker, C., Scholes, R.J., Le, Q.B., Bondeau, A., Eastman, R., 2012. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ., 121, 144–158. https://doi.org/10.1016/j.rse.2012.01.017 Search in Google Scholar

Formica, A.F., Burnside, R.J., Dolman, P.M., 2017. Rainfall validates MODIS-derived NDVI as an index of spatiotemporal variation in green biomass across non-montane semi-arid and arid Central Asia. J. Arid Environ., 142, 11–21. https://doi.org/10.1016/j.jaridenv.2017.02.005 Search in Google Scholar

Fu, B., Burgher, I., 2015. Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. J. Arid Environ., 113, 59–68. https://doi.org/10.1016/j.jaridenv.2014.09.010 Search in Google Scholar

Gang, Y.I.N., Zengyun, H.U., Xi, C., Tashpolat, T., 2016. Vegetation dynamics and its response to climate change in Central Asia. Journal of Arid Land, 8, 375–388. https://doi.org/10.1007/s40333-016-0043-6 Search in Google Scholar

Gaughan, A.E., Stevens, F.R., Gibbes, C., Southworth, J., Binford, M.W., 2012. Linking vegetation response to seasonal precipitation in the Okavango–Kwando–Zambezi catchment of southern Africa. Int. J. Remote Sens., 33, 6783-6804. https://doi.org/10.1080/01431161.2012.692831 Search in Google Scholar

Ghebrezgabher, M.G., Yang, T., Yang, X., Eyassu Sereke, T., 2020. Assessment of NDVI variations in responses to climate change in the Horn of Africa. Egypt. J. Remote Sens. Sp. Sci., 23, 249–261. https://doi.org/10.1016/j.ejrs.2020.08.003 Search in Google Scholar

Gherissi, R., Kamila, B.-H., Abderrazak, B., 2021. Highlighting drought in the Wadi Lakhdar Watershed Tafna, Northwestern Algeria. Arab. J. Geosci., 14, 1–23. https://doi.org/10.1007/s12517-021-07094-3 Search in Google Scholar

Giorgi, F., Lionello, P., 2008. Climate change projections for the Mediterranean region. Glob. Planet. Change, 63, 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005 Search in Google Scholar

Han, J., Zhang, X., Wang, J., Zhai, J., 2023. geographic exploration of the driving forces of the NDVI spatial differentiation in the Upper Yellow River basin from 2000 to 2020. Sustainability, 15, 3, 1922; https://doi.org/10.3390/su15031922 Search in Google Scholar

Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., 2014. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol., 34, 623–642. https://doi.org/10.1002/joc.3711 Search in Google Scholar

Hawinkel, P., Thiery, W., Lhermitte, S., Swinnen, E., Verbist, B., Van Orshoven, J., Muys, B., 2016. Vegetation response to precipitation variability in East Africa controlled by biogeographical factors. J. Geophys. Res. Biogeosciences, 121, 2422–2444. https://doi.org/10.1002/2016JG003436 Search in Google Scholar

Hou, W., Gao, J., Wu, S., Dai, E., 2015. Interannual variations in growing-season NDVI and its correlation with climate variables in the southwestern karst region of China. Remote Sens., 7, 11105–11124. https://doi.org/10.3390/rs70911105 Search in Google Scholar

Hu, C.H., Ran, G., Li, G., Yu, Y., Wu, Q., Yan, D., Jian, S., 2021. The effects of rainfall characteristics and land use and cover change on runoff in the Yellow River basin, China. J. Hydrol. Hydromech., 69, 29–40. https://doi.org/10.2478/johh-2020-0042 Search in Google Scholar

Huang, K., Xia, J., Wang, Y., Ahlström, A., Chen, J., Cook, R.B., Cui, E., Fang, Y., Fisher, J.B., Huntzinger, D.N., 2018. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol., 2, 1897–1905. https://doi.org/10.1038/s41559-018-0714-0 Search in Google Scholar

Huang, S., Kong, J., 2016. Assessing land degradation dynamics and distinguishing human-induced changes from climate factors in the Three-North Shelter forest region of China. ISPRS Int. J. Geo-Information, 5, 158. https://doi.org/10.3390/ijgi5090158 Search in Google Scholar

IPCC, 2022. Climate Change 2022 - Mitigation of Climate Change. Full Report. Cambridge University Press. Search in Google Scholar

Jiang, S., Chen, X., Smettem, K., Wang, T., 2021. Climate and land use influences on changing spatiotemporal patterns of mountain vegetation cover in southwest China. Ecol. Indic., 121, 107193. https://doi.org/10.1016/j.ecolind.2020.107193 Search in Google Scholar

Jin, H., Chen, X., Wang, Y., Zhong, R., Zhao, T., Liu, Z., Tu, X., 2021. Spatio-temporal distribution of NDVI and its influencing factors in China. J. Hydrol., 603, 127129. https://doi.org/10.1016/j.jhydrol.2021.127129 Search in Google Scholar

Julien, Y., Sobrino, J.A., Verhoef, W., 2006. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens. Environ., 103, 43–55. https://doi.org/10.1016/j.rse.2006.03.011 Search in Google Scholar

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., 2015. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Japan. Ser. II, 93, 5-48. https://doi.org/10.2151/jmsj.2015-001 Search in Google Scholar

Li, D., Zhang, J., Wang, G., Wang, X., Wu, J., 2020. Impact of changes in water management on hydrology and environment: A case study in North China. J. Hydro-Environ. Res., 28, 75–84. https://doi.org/10.1016/j.jher.2019.04.001 Search in Google Scholar

Li, M., Cao, S., Zhu, Z., Wang, Z., Myneni, R.B., Piao, S., 2023. Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022. Earth Syst. Sci. Data, 15, 4181-4203. Search in Google Scholar

Li, P., Wang, J., Liu, M., Xue, Z., Bagherzadeh, A., 2021. Spatiotemporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. Catena, 203, 105331. https://doi.org/10.1016/j.catena.2021.105331 Search in Google Scholar

Lin, M., Hou, L., Qi, Z., Wan, L., 2022. Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000–2019. Ecol. Indic., 142, 109164. https://doi.org/10.1016/j.ecolind.2022.109164 Search in Google Scholar

Liu, C., Yan, X., Jiang, F., 2021. Desert vegetation responses to the temporal distribution patterns of precipitation across the northern Xinjiang, China. Catena, 206, 105544. https://doi.org/10.1016/j.catena.2021.105544 Search in Google Scholar

Liu, Q., Yang, Z., Han, F., Wang, Z., Wang, C., 2016. NDVIbased vegetation dynamics and their response to recent climate change: a case study in the Tianshan Mountains, China. Environ. Earth Sci., 75, 1–15. https://doi.org/10.1007/s12665-016-5987-5 Search in Google Scholar

Liu, X., Zhu, X., Zhang, Q., Yang, T., Pan, Y., Sun, P., 2020. A remote sensing and artificial neural network-based integrated agricultural drought index: Index development and applications. Catena, 186, 104394. https://doi.org/10.1016/j.catena.2019.104394 Search in Google Scholar

Liu, Y., Li, Y., Li, S., Motesharrei, S., 2015. Spatial and temporal patterns of global NDVI trends: correlations with climate and human factors. Remote Sens., 7, 13233–13250. https://doi.org/10.3390/rs71013233 Search in Google Scholar

Luo, H., Dai, S., Li, M., Liu, E., Li, Y., Xie, Z., 2021. NDVIbased analysis of the influence of climate changes and human activities on vegetation variation on Hainan Island. J. Indian Soc. Remote Sens., 49, 1755–1767. https://doi.org/10.1007/s12524-021-01357-y Search in Google Scholar

Mao, D., Wang, Z., Luo, L., Ren, C., 2012. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinf., 18, 528–536. Search in Google Scholar

Meddi, M.M., Assani, A.A., Meddi, H., 2010. Temporal variability of annual rainfall in the Macta and Tafna catchments, Northwestern Algeria. Water Resour. Manag., 24, 3817–3833. https://doi.org/10.3390/w13111477 Search in Google Scholar

Milics, G., 2021. A coupled impact of different management and soil moisture on yield of winter wheat (Triticum aestivum L.) in dry conditions at locality Mezoföld, Hungary. J. Hydrol. Hydromech., 69, 76–86. https://doi.org/10.2478/johh-2020-0039 Search in Google Scholar

Rhif, M., Abbes, A. Ben, Martínez, B., Farah, I.R., Gilabert, M.A., 2022. Optimal selection of wavelet transform parameters for spatio-temporal analysis based on nonstationary NDVI MODIS time series in Mediterranean region. ISPRS J. Photogramm. Remote Sens., 193, 216–233. https://doi.org/10.1016/j.isprsjprs.2022.09.007 Search in Google Scholar

Shah, S.H., Rehman, A., Rashid, T., Karim, J., Shah, S., 2016. A comparative study of ordinary least squares regression and Theil-Sen regression through simulation in the presence of outliers. J Sci Technol, 137, 142. Search in Google Scholar

Shang, J., Zhang, Y., Peng, Y., Huang, Y., Zhu, L., Wu, Z., Wang, J., Cui, Y., 2022. Climate change drives NDVI variations at multiple spatiotemporal levels rather than human disturbance in Northwest China. Environ. Sci. Pollut. Res., 29, 13782-13796. https://doi.org/10.1007/s11356-021-16774-2 Search in Google Scholar

Sohoulande, D.C., Singh, V.P., Frauenfeld, O.W., 2015. Vegetation response to precipitation across the aridity gradient of the southwestern United states. J. Arid Environ. 115, 35–43. https://doi.org/10.1016/j.jaridenv.2015.01.005 Search in Google Scholar

Sun, J., Qin, X., 2016. Precipitation and temperature regulate the seasonal changes of NDVI across the Tibetan Plateau. Environ. Earth Sci., 75, 1–9. https://doi.org/10.1007/s12665-015-5177-x Search in Google Scholar

Tayeb, S.T., Kheloufi, B., 2019. Spatio-temporal dynamics of vegetation cover in North-West Algeria using remote sensing data. Polish Cartogr. Rev., 51, 117–127. https://doi.org/10.2478/pcr-2019-0009 Search in Google Scholar

Wang, H., Li, Z., Niu, Y., Li, X., Cao, L., Feng, R., He, Q., Pan, Y., 2022. Evolution and climate drivers of NDVI of natural vegetation during the growing season in the arid region of Northwest China. Forests, 13, 1–21. https://doi.org/10.3390/f13071082 Search in Google Scholar

Wang, J., Price, K.P., Rich, P.M., 2001. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int. J. Remote Sens., 22, 3827–3844. https://doi.org/10.1080/01431160010007033 Search in Google Scholar

Wei, Y., Sun, S., Liang, D., Jia, Z., 2022. Spatial–temporal variations of NDVI and its response to climate in China from 2001 to 2020. Int. J. Digit. Earth, 15, 1463–1484. https://doi.org/10.1080/17538947.2022.2116118 Search in Google Scholar

Wen, L., Yang, X., Saintilan, N., 2012. Local climate determines the NDVI-based primary productivity and flooding creates heterogeneity in semi-arid floodplain ecosystem. Ecol. Modell., 242, 116–126. https://doi.org/10.1016/j.ecolmodel.2012.05.018 Search in Google Scholar

Wenxia, G., Huanfeng, S., Liangpei, Z., Wei, G., 2014. Normalization of NDVI from different sensor system using MODIS products as reference. IOP Conf. Ser. Earth Environ. Sci., 17. https://doi.org/10.1088/1755-1315/17/1/012225 Search in Google Scholar

Xie, Y., Yue, T., Xin‐sheng, C., Feng, L., Zheng‐miao, D., 2015. The impact of Three Gorges Dam on the downstream ecohydrological environment and vegetation distribution of East Dongting Lake. Ecohydrology, 8, 738–746. https://doi.org/10.1002/eco.1543 Search in Google Scholar

Xu, B., Qi, B., Ji, K., Liu, Z., Deng, L., Jiang, L., 2022. Emerging hot spot analysis and the spatial–temporal trends of NDVI in the Jing River Basin of China. Environ. Earth Sci., 81, 1–15. https://doi.org/10.1007/s12665-022-10175-5 Search in Google Scholar

Yang, Y., Wang, S., Bai, X., Tan, Q., Li, Q., Wu, L., Tian, S., Hu, Z., Li, C., Deng, Y., 2019. Factors affecting long-term trends in global NDVI. Forests, 10, 1–17. https://doi.org/10.3390/f10050372 Search in Google Scholar

Zaidi, S.M., Akbari, A., Abu Samah, A., Kong, N.S., Gisen, A., Isabella, J., 2017. Landsat-5 time series analysis for land use/land cover change detection using NDVI and semisupervised classification techniques. Polish J. Environ. Stud., 26, 2833–2840. https://doi.org/10.15244/pjoes/68878 Search in Google Scholar

Zhang, Y., Gao, J., Liu, L., Wang, Z., Ding, M., Yang, X., 2013. NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Glob. Planet. Change, 108, 139–148. https://doi.org/10.1016/j.gloplacha.2013.06.012 Search in Google Scholar

Zhang, Y., Zhang, L., Wang, J., Dong, G., Wei, Y., 2023. Quantitative analysis of NDVI driving factors based on the geographical detector model in the Chengdu-Chongqing region, China. Ecol. Indic., 155, 110978. https://doi.org/10.1016/j.ecolind.2023.110978 Search in Google Scholar

Zhao, M., Zhao, H.F., Li, R.Q., Zhang, L.Y., Zhao, F.X., Liu, L.X., Shen, R.C., Xu, M., 2017. Assessment on grassland ecosystem services in Qinghai Province during 1998–2012. Journal of Natural Resources, 32, 3, 418–433. Search in Google Scholar

Zhou, Z.-Y., Li, F.-R., Chen, S.-K., Zhang, H.-R., Li, G., 2011. Dynamics of vegetation and soil carbon and nitrogen accumulation over 26 years under controlled grazing in a desert shrubland. Plant Soil, 341, 257–268. https://doi.org/10.1007/s11104-010-0641-6 Search in Google Scholar

Zoungrana, B.J.B., Conrad, C., Thiel, M., Amekudzi, L.K., Da, E.D., 2018. MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. J. Arid Environ., 153, 66–75. https://doi.org/10.1016/j.jaridenv.2018.01.005 Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, Engineering, other